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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE
FOR RIESZ-SCHRODINGER TRANSFORMS

B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

ABSTRACT. In this work we are concerned with Fefferman-Stein type inequal-
ities. More precisely, given an operator T' and some p, 1 < p < o, we look for
operators M such that the inequality

[rsrw<c [

holds true for any weight w. Specifically, we are interesteddin the case of 1T’
being any first or second order Riesz transform associated to the Schrodinger
operator L = —A+V | with V' a non-negative function satisfying an appropriate
reverse-Holder condition. For the Riesz-Schrédinger transforms VL~ 1/2and
V2L~! we make use of a result due to C. Pérez where this problem is solved
for classical Calderén-Zygmund operators.

1. INTRODUCTION

In the theory of weighted LP-inequalities a relevant is the following: given an
operator T' and 1 < p < oo, todfindya positive.operator M such that inequalities of
the form

(1) s [P,

hold for seme reasonable set of functions f of R¢, d > 1, and a general weight w,
ie. w gLl (RY), w >0.\However, the above inequality become more interesting
when' Mw is finite a.e. and to that end it is desirable to get the operator M as
small as\possible.

The first’ appearance of such inequality goes back to the classical result of

Fefferman-Stein ([7]) for T = M = M, the Hardy-Littlewood maximal operator,

namely
[ ovsew < [ 1rpae.
Rd ]Rd
for 1 < p < 0.

When T is a singular integral operator, Cérdoba and Fefferman showed in [4] that
inequality holds taking M = M, = (M (w"))*/", for any 1 < r < co. However, it
is known that for the Hilbert transform that inequality fails for » = 1.

Later, Wilson in [I1I] obtained inequalities for 1 < p < 2 and M = Mo M
improving the result in [4] since M o M(w) < (M (w"))Y/", for all r > 1.

In 1995, C. Pérez provided a full answer to this question with different tech-
niques including weak type inequalities for p = 1. He deals with maximal operators
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associated to averages with respect to a Young function which can be smaller than
M,.

Below, we state the precise statements since they are essential to our work.

By a Young function A we mean A : [0,00) — [0,00) continuous, convex, in-
creasing and such that A(0) = 0. To define a maximal operator associated to a
Young function A we introduce the A-average of a function f over a ball B as

2) ||f||A,B:mf{A>o;|]13|/BA(|f§t)>dtg1}.

Then, the maximal operator associated to a Young function A is
(3) Maf(x) = sup || flla,5.
B3z

For 1 < p < oo, we define D,, as the class of Young functions such that

[ () e

for some ¢ > 0.

The following theorem appears as Theorem 4s5 in[9]. There it is stated for
singular integral operators. But according to,the comment in“Section 3 there, it
also holds for Calderén-Zygmund operators as it is stated next.

Theorem 1. Let 1 < p < oo, and let T be a Calderdn-Zygmund operator. Suppose
that A € D,,. Then there exists a constant C' such that for each weight w

(5) [1zirese [ 1.

The following theorem deals with the endpeint case p = 1 and it is also due to
C. Pérez. Here we statesa version that can be found in [5] as Theorem 9.31.

Theorem 2. Let T be o Calderén=Zygmund operator and let A € Up>1 Dp. Then
there exists a constant C. such that for each weight w and for all A > 0 we have

(6) uly € BN > ) < S [ 110 Maw ().

Some ‘examples of functions on the class D, are A(t) = tlog? '""*(1 4+ t) or
A(t) = tlogP h(1 4+ t) log? ' (log(1 + t)) for any € > 0. As for the class Ups1 Dy
we can take A(t)= tlog®(1+t) for any £ > 0.

In this work we attempt to provide results of this type for the first and sec-
ond order Riesz transforms associated to the Schrodinger differential operator L =
—A 4+ V onR? d > 3 and with V satisfying a reverse Holder inequality of order
q, ¢ > d/2, that is, there exists C such that

g () <em f,r

holds for every ball B in R?. From now on, if a function V satisfy above we
will say that V € RH,.

The study of these operators under such assumptions on V', was started by Shen
in [I0], where he proves LP boundedness for most of the operators we will be con-
cerned with. As he observed, when ¢ > d, the first order Riesz transforms VL ~1/2
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are standard Calderén-Zygmund operators. Otherwise, they are not necessarily
bounded on L? for all p, 1 < p < oo. The case of the second order Riesz transforms
given by V2L~ is even worse since one can assures boundedness only for 1 < p < q.
However, we may expect in inequality a smaller operator M than those given
by Pérez, since Schrodinger Riesz transforms have kernels with a better decay at
infinity. Also, in this context, kernels may have no symmetry and hence we might
obtain different results for 7" and its adjoint.

Essentially, we will be considering two types of first and second order Riesz
transforms: one involving only derivatives VL~'/2 and V2L~', and the others
involving the potential V', as VY/2L=Y2 VL=! and VY/2VL~!. In the first case
we will get our results by locally comparing with the classicalyRiesz transforms,
allowing us to apply the results of C. Pérez. Let us point out that for VL~1/2 such
comparison estimate appeared already in [10] but that is not the case for V2L ™!, so
it must be provided. We do that in Lemma [§] and we believerdtmight be,useful for
other purposes. As for those operators involving V' we shall require only estimates
on the size of their kernels.

We would like to make a remark about the valuestof p forswhich inequalities like
(1) will be obtained. In all instances the operatorsM oemthe right hand side satisfies
M(1) <1 and therefore our results would imply boundedness on LP, so the range
of p should be limited as in the original work of Shen.

The paper is organized as follows. In.the nextisection we state some general
theorems in a somehow abstract frandework but having in mind the Schrodinger
Riesz transforms mentioned above,deaving all the proofs and technical lemmas to
Section

The results include strongtypen(p, p) inequalities like as well as weak type
(1,1) estimates for a suitable class of operators and their adjoints. Let us remark
that inequalities for the adjoint operators are not, obtained by duality. In fact, if we
proceed in that way we would not arrive to an inequality with an arbitrary weight
on the left hand side as we wanted:

Sectionlis devoted to apply the general theorems of Section [2] to specific opera-
tors associated to Schrodinger semigroup: VL™1/2 V2L~1 VoL~ yo-l/2yL—o
with' @ in a range depending on the operator. In order to check that their kernels
satisfy the required assumptions, sometimes we make use of known estimates by
in other oceasions we must prove them. In particular we prove a local comparison
between the kernels of V?(—A)~! and V2L~! stated in Lemma @

Finally in the last section we use the above results to get sufficient conditions
on a function f to ensure local integrability of T'f, where T is any of the operators
of Section ] Consequently we obtain a large class of functions f such that T'f is
finite a.e.. In fact, f is allowed to increase polynomially. When this results are
applied to the Riesz-Schrédinger transforms they provide qualitative information
about solutions of some differential equations involving L.

2. GENERAL RESULTS

In this section we will consider the space R? equipped with a critical radius
function p : R — (0,00), that is, a function whose variation is controlled by the
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existence of Cy and Ny > 1 such that

—No

No

- |z —y| [z — y|\ Mo+l
® ot (14 < ply) < Copla) (1+ -

0 p(z) p(z)
It is worth noting that if p is a critical radius function , then for any v > 0 the
function ~yp is also a critical radius function. Moreover, if 0 < v < 1 then vp
satisfies with the same constants as p.

The next lemma is a useful consequence of the previous inequality.

Lemma 1 (see [3], Corollary 1 ). Let z, y € B(xo, Ry). Then:
i) There exists C > 0 such that

No
1+RO<C<1+RO> .
p(y) p(xo)

i) There exists C' > 0 such that

r R() v r
o (i R ) (e,
p(y) p(zo) p(z)
for all v > Ry, where v = Ny (1 + N—J:_?_—l)

Associated to a critical radius fungtion p we can define the following maximal
operators. First, let us denote F, the set of all\balls"B(z, ) such that r < p(z).
Then, for f a locally integrable function, and Ala Young function, we set

9) MR f(w) = sup | /]| 4,5,

B3z

BEF,
and for 6 > 0,

9
To
(10) T e L
A B(zg,r0)3x p(.’L‘())

As usual, when A(t) = " we use the notation M'° and M? respectively.
Now, weare in position to state our main theorems.

Theorem 3. Let T be a linear operator with associated kernel K. Suppose that for
some s > 1, K satisfies the following estimates

(as) For each N > 0 there exists Cn such that

1/s R _N
/ ‘K(I’,y)‘sdiﬂ S CNRid/S/ (]— + > ’
R<|zo—z|<2R p(zo)

whenever |y — xo| < R/2.
(bs) There exists a Calderdn-Zygmund operator Ty with kernel K such that, for
some C' and 6 > 0,

1/s R 5
/ |K(z,y) — Ko(z,y)|*dx < CR™Y¢ ( ) 7
R<|zo—z|<2R o(20)

whenever |y — xo| < R/2 with R < p(x).
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Then, for each 6 > 0, the operator T and its adjoint T* satisfy the following
inequalities for any weight w,

(11) / TfPw < Cy / PP MO

forl<p<sandr=(s/p),

(12) [z srw<co [ 1otz + atu
for s' <p < oo and any Young function A € D,,.

Remark 1. Assumption can be seen as a size condition with a kind of “decay
at infinity”, while condition tells us that K has the same singularity as a
Calderén-Zygmund kernel. Nevertheless, both conditions o Krare not symmetric
since integration is always made in the first variable. Consequently. we donot get
the same kind of estimates for T and T*.

If the kernel K satisfies point-wise estimates we obtain a sharper result for T,
as a corollary of the previous theorem.

Corollary 1. Let T be a linear operator with associated kernel K and Ty be a
Calderon-Zygmund operator with kerneldlgm . Suppose that K satisfy the following
estimates.

(aso) For each N > 0 there exists Cn such that

Cn lz—y[\ "
K@< 157 (” p<x>)

(bso) There exist Cland 6 >0 such/that

K C (le=yl\’
R~ Koo < g (221)

Then, I’ and its adjoint T* satisfy for 1 < p < 0 and any Young function
A € Dy.

Corollary [ljfollows inmediately from Theorem |3|since conditions and
imply conditions and [(bs)| for all 1 < s < oo, and are symmetric in z and y.
For the limiting case p = 1 we can obtain the following weak-type inequalities.

Theorem 4. Let T be a linear operator with associated kernel K and let Ty be
a Calderon Zygmund operator with kernel Ko. Suppose that for some s > 1, K
satisfies conditions andm Then, for >0 and w € Lj,., w >0, T satisfies
(13) w{|Tf| > A}) < == / | fIME (w), for A > 0.

Further, if T satisfies and. then, for any Young function A € Up>1

(14) w({ITs1> 2 < 5 [ 11 Qa5+ %), for A0

Moreover, inequality also holds for T*.



ISSN 2451-7100
IMAL PREPRINT # 2018-0042 Publication date: October 26, 2018

6 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

The associated kernels of some operators related to L satisfy condition with-
out subtracting Ky and hence condition (as) and (bs) can be unify. For this type
of operators we can get sharper inequalities stated in the following theorem.

Theorem 5. Let T be a linear operator with associated kernel K. Suppose that for
some s > 1 and § > 0, K satisfies the following condition:

(cs) For each N > 0, there exists Cn such that

v pleo)\ R\
K(z,y)|*dz| < COnR™Y¢ (1 + °> (1 + > :
(/R<woac|<2R ( ) ) N R p(zo)

whenever |y — xo| < R/2.

Then, for any 0 > 0 and any weight w, there exists Cy such that T satisfies
for1<p<s and

(15) / T fPw < Cy / P MO,

for s’ < p < oo.

3. PROOFS

Before giving the proofs of the theorems above we need to state some techni-
cal lemmas that will be useful in thesequel. The first one is a consequence of
inequality and can be found in [6].

In some proofs we will use the notation < instead of < to denote that the right
hand side of the inequality is greater up.to constants that may depend on some
parameters specified when nécessary:

Proposition 1. There exists assequence of points {x;}jen such that the family of
critical balls Q; = B(&j, p(3)) satisfies

i) | J@Qp=R"
jEN
it) There exist constants,C and Ny such that for any o > 1, Z Xo@; < Co™.
JEN

In general, maximal operators can not be controlled point-wisely by localized
ones. Nevertheless, this is possible if we are considering functions supported on
sub-critical balls and for points close enough to the support. In the next lemma we
determine how much a critical ball must be contracted in order to have that kind

of control. Such contraction of critical balls is needed to arrive to inequality
of Theorem [

Lemma 2. Let A be a Young function and By any critical ball. There exists vo > 0
such that if 0 < v < g then for any function f,

(16) Ma(fxypo)(x) < CME(f)(@),

for all x € 2yBy. Here, the constant C only depends on the dimension d and the
Young function A.

Proof. Assume x € 2yBjy with 7 to be determined later. It is enough to consider
balls centered at x; in fact, it is not difficult to see that if M§ is the centered
maximal function, then M4 (f)(z) < CMS(f)(x) for any function f with C that
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only depends on d and A. Let xy be the center of By and suppose first that
r > 3vp(xg). Therefore B(x,r) D B(z,3vp(xo)) D 7Bo and thus, for any non-
negative function g,

1 1 1

YTl g < —/ g < —/ g-
|B(]},T)‘ B(z,r)NyBo |B($’37p(x0)) By |B(Z‘,3’}/p(l‘0))| B(z,3vp(x0))|

Now, if A > 0, applying the above inequality to g = A(|f|/\) we have, for
r > 3vp(zo),

1 fxyBoll A, By < fllA,B(2,3vBo)-
Therefore, if x € 2vBy,
M.Z(fX”/Bo)(x) < sup ”fHA,B(m,r)'
r<3vp(zo)

To complete the proof, it is enough to take -y such that8yp(xo) < p(x).for all
X € 2’)/Bo

From inequality (8), we have p(z¢) < p(z)Gg(l + 24)No and thus,y should be
taken such that
(17) 37Co(1 + 2y)No £1.

Since the left hand side goes to 0 when v goes to 0, there exists vy such that for
0 < v > 79 the above inequality holds.
O

Conditions and |(bs)| are written in a suitable way to prove inequalities
concerning T*. To prove the inequalitiesfor T it will be easier to use the following
equivalent conditions.

Lemma 3. For any s > 1, conditions|(a,)] and|[(bs)| are equivalent to, respectively,
to the following conditions.

(a),) Forseach N> 0 there exists Cy such that

1/s R _N
[4 iK@re)  <onr (10
B(xo,R/2) p(zo)

whenever R < |y — zo| < 2R.
(b)) There exist C and € > 0 such that

1/s e
/‘ K (z,y) — Ko(x,y)|*da SCRWy(BE>
B(0,R/2) p(xo)

whenever R < |y — xo| < 2R and R < p(zo).

Remark 2. Observe that (as) holds true replacing the ring, R < |x —zg| < 2R with
R < |z — 29| < CR for any constant C' > 1, with the constant Cy depending on
C'. Similarly in (a}) the ring R < |y — z¢| < 2R may be replaced by R < |y — x| <
CR. In fact, it is only a matter of applying (as) or (a}) a finite number of times
deppending on C.

The same comment applies to (bs) and (b).

Proof of Lemma[3 We will show first that implies @ Let K be a kernel
satisfying for some s > 1, and let 2o € R?, R > 0 and y such that R <



ISSN 2451-7100
IMAL PREPRINT # 2018-0042 Publication date: October 26, 2018

8 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

|zo —y| < 2R. Tt is easy to check that B(zg, R/2) C {r: R/2 < |z —y| < 4R}. So,
applying condition we get that

1/s
( / |K<x,y>|8dx) < ( / |K<x,y)|m>
B(zo,R/2) R/2<|y—z|<4R

—N
< CxR™¥ (1 + R)
P(y)

-N
< CxyR™¥ (1+ R) :
P(Io)

1/s

where in the last inequality we used Lemma

To see that implies let 7o € RY, R > 0 and y € B(x¢, R/2). The ring
{z : R < |z —x0| < 2R} can be covered by M balls (depending on.d), of radius R/4
and centres x;, with R < |z; — x¢| < 2R, for i = 1,..., M. For each of these balls
we can check that R/2 < |z; — y| < 5R/2. Applying condition [(a])and Remark
on each ball,

1/s M 1/s
( / |K<x,y>|5dx> <> ( / |K<x,y>|5d:c>
R<|y—z|<2R : B(z;,R/4)

where we used again Lemma[I}in thelast inequality.
We can omit the proof of the equivalence of and since it follows the
same lines as above.
O

Proof of Theorem[3 Let T be a linear operator with kernel K satisfying[(a)|and[(bs)]
for some s> 1 and some Calderén-Zygmund operator Ty with kernel Ky. Let w > 0,
we L}, 0>0,1<p<sandlet A be a Young function satisfying .

We will prove first inequality . Let v be as in Lemma For some v < ~vp, to
be chosen later, let {Q,} be the decomposition of the space given in Proposition
for the critical radius function yp. Then we write

[1rsre <y / TfpPw

neN
-y / T(fxoa.) + T(Fxaas) + To(fxaq, )P0
(18) neN
S Z/ T(fx2q.) — To(fx2q,)[fw + Z/ T(fx2qq)Pw
neN neN

+ Z/ ITo(fx20, )|Pw =T+ IT+III.
neN
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For II1, since Ty is a Calderén-Zygmund operator, we apply Theorem [I| and
Lemma [2] to get

nr=>%" / To(fx2q.)[Pwxa.

neN

< Z/|fX2Qn|MA wxQ, )

neN

S [ uparie

neN

< [

for any Young function A € D,,.
For k € Z we denote QF = 2FQ,. To estimate II we use Minkowski’s and
Hoélder’s inequalities to obtain

=3 / T(fx(ao,e)Pw

neN

zz/

neN n

<y [ [ o ( [ e Meaceias) dy]

neN

< Z L;\T/‘“\Qk (/Qn |K(f”ay)lsdx)1/s (/ n wr(@dz)l/mdy]p’

neN

/ IK(w,y)Ilf(y)ldy} W)
(QQn)C

p

where r.= (s/p).
Next we apply condition@ for K, since by Lemmaconditionis equivalent
to then for each IV we have

> N ls ‘“V/Qn f(y”(/an)“”’dy]

p

neN kEN
1/r 1/p P
<3| @bk / If(y)l”(/ w) dy
neN | keN . Qk
1/p] P

I 1/r
1
<S03 2o/ / Fwlr2 ([ w)  ay
Qk Q% QF

neN kEN

1/p]P
< Z? HN=O0/) (/ <y>|prw<y>dy> :

neN kEN

with constants that may depend on N.
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Finally, using Holder’s inequality in the sum over k and choosing N = N; —
0/p + 1, where Nj is the constant appearing in Proposition |1, we arrive to

v
II1 < Z [22 k(N1+1)/ | f|P M9 1 [Z 2—k(N1+1)r ’

neN LkeN keN
< 22%(%“ / (Z Xor > | f|P Mfw
keN neN

< [ 1t
Rd

with constants depending on Ny and 6 and p.

It only remains to estimate I. Let Q(z,y) = K(z,y) — Ko(z,y). "For x € Q.,
we have 2Q,, C B(z, p(z)) due to our choice of vy (see inequalityn(17)), therefore we
may write

I= Z/ T(fx2q,) — To(fx2q w

< Z/ {/ (=) )|dy]pw(m)dx
( ) neN Qn )
<>/, [ L.of Q(x,y)llf(y)Idy] w(e)ds

P — [l
< [ e ni ..
where
el Syl QG )5l
B(z,p(z))
For & fixed k and for any n we can take 29 disjoint balls of the form sz,k =
B(:cfl7k, 2= Fyp(ay)) such that for o > V/d,

29k

Q. C U O’Bf%k C 20Q,,.
=1

Moreover, there exists a constant depending only on ¢ and d such that,

2dk

D Xoni, < CaoX20Qn-
=1

Therefore, from Proposition |1, the family of balls {UBf%k}l,n covers R? and

ZXUBL & S Cd7(77p'

lin

Let us fix ¢ = 2V/d. It is possible to choose v small enough such that if = € 0B,
and 27%1p(2) < |y — x| <2 Fp(x) then

ye B, ={y: aVdy27"p(z,) < |y — 2L, | < By2 Fp(2n)}
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for some constant 3 > 4v/d depending only on p and d
Now, we write h in the following way

DWIEEDS ), QI W)ldy.
paar B(2,2-% p(a))\B(a:2~*~1p(a))

So, for this covering of the space described above, we may write
(20)

p
oy < 3 [ [ / IQ(%y)If(y)dy] w(e)de
il 2vdB!, , |/ B(,27%p(x))\B(z,2=F~1p(x))

<Z/ [/l 1Q (xvy)llf(y)ldy] w(z)d

VdBl,
1/p p
< ) . )
a ; /ng F ()l </z\/835w |Q(z, y)[Faw(x) :1:) Y
_ 1/8 1/(rp) 7P
S A d d
A\

where we have used Minkowski’s andfHolder’s, inequalities in the last two steps.
Now, using condition @ for Q(x,y) (See Remark , we arrive to

(21)
1/(rp) p
1P 1 ) S > @ Fp(x) a2 kE / Lf(y)] / w"(z)dx dy
n,l BBL k BBL,,k
1 1/r
S / () w(@)de | dy
Z Bl’ ‘/BB k| BBZ "
7 20D [, @Iy
ks

S27 p||f\|Lp(Me )
Finally,
(22) Pl zrwy < D Ikllzrw) S 275N leaow) S Il arow)-

k>0 k>0
Using the estimates obtained for I, I1 and 111 we arrive to inequality .
Now, let us prove inequality . Proceeding as in we get
/|T*f|”w SI*+ I+ 11717,

and we can estimate II/7* in the same way as III, since T* is also a Calderdn-
Zygmund operator.

IFor example, it works taking v = W and B8 = 2C2(5v/d)No+2
o



ISSN 2451-7100
IMAL PREPRINT # 2018-0042 Publication date: October 26, 2018

12 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

For IT*, we write

E:&/‘ (X)) fw

neN

-> [ ( [ e >|dx)pw<y>dy.

neN

(23)

If y € Q,, we may use Holder inequality and condition to obtain

[ K@@
(2Qn)°

1/13, 1/p
P’ p
< </ﬁ+1\Qk K (z,y)| dw) (/Qﬁ“ |f] )

k>1

2 1/p
< Sd P k 1/8,71/1)
,2 (/ k+1\Qk K(z,yl I) (/Qf{“ A > |Qn|

24 1/p
” Sy (o 1)
k>1 ‘Qn | QﬁJrl
r . q1/p 1/p’
2” .
< |5 i [l T2
[k>1 1%n | =1
r ki
o
S —eT LA
k> |QRE! | J@k+
Therefore,
1
I < 2ka p
SIS ey [ P g w0
ST S [ e
(25) neNkeN
sk [ (T ) urar
keN neN

< / |FIP MO
Rd

choosing N = Ny + 6 + 1.
It only remains to estimate I'*. Proceeding as in , we have

-3 / “(Fraan) = Te(Fxea) 7w < B2 .

where

W (y) = / Q@ v)| f(2)dx,
B(y,p(y))
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and write

h* h Oz, v)||f (z)|dz.
(y) = Z / RN - C [ S

Now, for a fixed k, using Holder’s inequality and denoting B(y,2 %p(y)) = B’y“7
we have

1/s 1/p
(26) hZ(y)SCUBk\Bk_l |Q(=’E>y)sdw> </Bk |f|P> (27 p(y)) Y/ (/)P

Now for a fixed k, we consider again the covering {B(:cfhk, 22/dy27* p(2)) Y-
Using condition |(bs), we obtain

(27)
LIAREDY / B ()P ()dy

< P (97K p(q. ) EP(L/ s 1/ p)
N;<43lk|f|>< o(4,)) I

p/s
Q(, y)lsdw> w(y)dy

W

n, n,k n,k

<Z</ )Fiszi—))d/w;,kw

1
<Y gk / P Sy A P
nz,l BBiz,k |ﬁB£l7k| BBL,k
<ok / P

=kps
ST B o

So, asfit was done in (22)),

(28) 1B* Loy < Co > il Loy S I1Fllze(arow)-
E
Using the estimates obtained for I*, IT* and II11* we arrive to inequality .

O

Remark 3. It is worth noting that the estimates obtained for I and I also hold
for the case p = 1. Following the same ideas as above we arrive to

(20) > [ rUxeaws e [ 15mbw),

neN
(30) 3 / T(fxa0.) = TolFrag )l < Co [ 11ME(w).

neN

Now we prove the weak-type inequalities stated in Theorem [4]

Proof of Theorem[]} Let T be a linear operator with kernel K and w € L}, ., w > 0.
Suppose first that K satisfy condltlons and - for some 1 < s < co. Consider
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again {Q, }nen, the partition of the space associated to vyp, with 4 chosen as in the
proof of Theorem (3| For A\ > 0, we may write

w{ITf] > A} <Y w({z € Qu: T (@) > A})

neN

<> w{z € Qn t [T(fx20.)(x) — To(fx20,) ()| > A/3})

neN

(31) + 3 wl{r € Qut [T(fx(agme)@)] > A/3))

neN

+ > w({z € Qn : |To(fx2q.)(@)> A/3})

neN
=I+1I+1I1I.

To estimate [T we can use this time Theorem [2] together withyLemma[2] to, get

T =Y w{z € Qu : |To(fxag,) ()l > A/3})

neN

< ZwXQn({x To(fx2qu (Z)h> A/3})

neN

(32) SN ST

neN

iy [ affrrw

neN

<5 JoTEgE )
Rd

for any Young function# € [Jgl| Dp. In particular we can take A(t) = 5" since we
will not get any better for the otherterms.

As for Land L] we use the strong type inequalities for p = 1 stated on Remark 3}
In this way we obtain

Now, suppose that the kernel K satlsfy conditions [(a. )| and [(boo) - Let A > 0,
we use the same decomposition as in ) to get

wl{|Tf > )\}) <I+II+1I1
We deal with' IZ] in the same way, obtaining

s [ st

for any A € U,., Dy

For k € Z we set Q’fl = B(z;,72"p(z;)). To estimate the term II by the
Tchebyshev’s inequality we may write

1= w({z € Qn : IT(fxqu)) (@) > A/3})

neN
(33) = 7126;1 / T(fx@2q.me)l(r)w(r)ds
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Now, using condition (@)

st Z/ S gyt (L 10l ) wieyts

nEN " kEN

Siyye / ol (e [, wlete)

nENkEN
(34) S [ @M )iy
nGNkEN
Sk [ (Lo ) s
keN neN

< [ 1 )y,

choosing N = Ny +6 + 1.
Next, to estimate I we use the Tchebyshev’s inequality and condition (b).

=Y w{r € Qn: (T —To)(freq)@)| >N/3})

JEN
3
< neN)\/ (/ZQ” | K (z, y) = Ko(x,y)||f(y)|dy> w(z)dz
(35) hd
N/ |z — o

NAJ%/ </Qn|$—y|d< p(@) ) dy) (x)d

- d/q—2 2=y () de d.
< A%pm) g il [N drds

Now, if y €2Q@uy and calling BY = B(y, 3vp(x,,)), then

/ |z — Y25 ¥ 1w (z)dx

n

< Z/ |z — y|?~ ¥y (z)dx

kEN k+lB?J\2—kB?/

2 4 k(2—d/q)
p(xn) /4 E k w
2 2—k+lB7yL

kEN
< P(xn)zid/quocw(y)-

Therefore, we obtain

1 1
1< = Mlocy < = Mfloc
(36) S5 En /QinfI WS /\/Rdlf(y)l w

Altogether we obtain inequality . The same estimate is obtained for T™* since

conditions and are symmetric on x and y.
O

Finally, we end this section with the proof of Theorem



ISSN 2451-7100
IMAL PREPRINT # 2018-0042 Publication date: October 26, 2018

16 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO
Proof of Theorem[5 Let T be a linear operator with associated kernel K satisfy-

ing First, observe that condition implies both conditions and [(b)|

with Ky = 0. Then, proceeding as in equation we can write

/|Tf|pw— Z/ x2q.) + T(fx2q: ) [Pw

neN
37
(37) S Z/ T(fx2q.) pw"'Z/ T(fx2qq)'w
neN neN
=I1+1I.

Then, inequality holds for 1 < p < s following the same lines'as in the proof
of Theorem [3| and taking into account Remark [3| for p = 1.
To obtain estimate we proceed as above to get

38 /|T* |Pw < Z/ |T* fXZQ |pw+Z/ |T* fX2Q° |pwkf*+II*

neN neN

and we deal with I* and II* as in the proof of Theorem

4. APPLICATION TO SCHRODINGER OPERATORS

In this section we apply our general results to operators associated to the semi-
group generated by the Schrédinger differential operator L = —A 4+ V on R¢ with
d > 3. We will always suppose that the potential V is a non-negative function,
non-identically zero, satisfying.a reverse Holder econdition of order ¢ > d/2. Under
these assumptions thé function p defined by

1
(39) p(:z:):sup{r>0 d2/B( )Vgl},xeRd

is a critical radius function, that is, property is satisfied for some constants Cj

and N.
It is known that V' € RH,, ¢ > 1 implies that V' is a doubling measure, i.e. there
exists C; such that

(40) [ veal w
B(x,2r) B(z,r)

In fact, if V'€ RH,, ¢ > 1, then V belongs to the A, class of Muckenhoupt.
The following is an useful inequality for V' € RH, with ¢ > d/2 that follows
easily from Lemma 1.2 and Lemma 1.8 in [10].

Lemma 4. Let V € RH, for some q¢ > d/2. Let Ny = log, C1 + 2 — d, where Cy
is the doubling constant of V.. Then, for any xo € R%, R > 0,

: / R \™ p(xo)\7*7°
i Vy)dy < C (1 + ) (1 + _
R [p(aq.R) ) p(wo) R
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4.1. Riesz-Schrodinger transforms. We consider the operators Ry = VI~1/2

and Ry = V2L™!, the Riesz-Schrodinger transforms of order 1 and 2 respectively.
Let K7 and K> be their associated kernels.

The size condition was shown to hold in [I], for both K; and K. To
prove that these kernels satisfy also condition we will compare them with
the classical Riesz transforms R; = V(—A)"Y2 and Ry = V?(—A)~! and their
associated kernels Ky 1 and Ko ».

Before proving condition |(bs)| we state the following lemmas that provide us
estimates for the difference between the kernels associated to the Riesz-Schrodinger
transforms and the classical ones. For the Riesz-Schrodinger transform of order
1 such result was already obtained by Shen. On the other hand, the estimate
corresponding to the second order operator is new and we believe is interesting in
its own right.

Lemma 5. [See [10], inequality (5.9)] Let V € RH, for df2 < q <.d. There exists
C such that

g — 2—d/q
|K1(z,y) — Koa(z,y)| < ¢ (G(m,y) - 1 (| y|> ) 7

|z —yld—t [z =yl \ alr)
where
(41) G(z,y) z/ —V(u%du.
Blafa—yl/4) [ 2]

Lemma 6. Let =, yo € R¥and R, > 0 such that R < |y — xo| < p(xo). Let
x € B(xo, R/8). Then there exists'a constant C such that

)
K2 (, y) — Kap(a, y)| SCHRa(VT (Y, )X B(2o,r/2)) (%) + % (p(i)) ,

with 6=min{1,2 - d/q}

Proof.“Let T'<and T'y be the fundamental solution of L and —A respectively. As it
was shown in [10], page 540,

(42) F(z,y) - To(a,y) = — /

R

From this we get the following expression for the difference of the kernels.

(43)

Ka(z,y) = Koale,) = VL) = Vila(e.9) = =% [ Tolw OV (. €)de.
R

Next, we define the following domains: J; = B(xo, R/4), Jo» = B(y, R/4) and

Js = (J1 U J3)¢. The term corresponding to the integral over J; is, upon a sign,

the classical second order Riesz transform applied to function in L¢ with compact
support, that is

(49) |V /J Po(, E)V(ET (4, €)d€| = [Ra(VT(y, )X 5an./0)) ()]
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On J,, since we are away from the singularity of Iy, we can use the size estimates
for I and T’y together with Holder’s inequality to obtain

/;th%QV@Ww@ME

¢ V(E)

-~ S e
(45) R [y ryay ly — €472

1
C q d¢
< —d Va(€)d S N
- </B<y,R/4> © g) </B<y,R/4> |y — £|<d—2>q’>

For the first integral we can use the reverse Holder condition for. V' togethér with
Lemma [4] while on the second integral ¢ > d/2 implies that (d —2)¢’ < d. Then

1
q

2-d/q
(46) Vﬁdmavgww@m4< 1(;5)) 7

N ﬁ (.130

Ja

since y € B(xo, p(z0))-

To estimate the integral on Js wel divide in J3; U'J3z, where J3; = {& € R :
R/4§ |y—§| < 2R A |$0—§| ZR/4} and J3o :{f ERd : |y—§‘ > QR} On J3;
we are away from the singularities. of both.I" y4', then

V(&)

2 T < d
[ g @ ge < [ e
1
< V(&)d
(47) ~ R2d-2 /B(y,2R) ()¢

2—d/q
51( R ) |
R\ p(z0)

where we in the last inequality, have used again Lemma
Regarding Jso it is easy to check that |« — &| > 3|y — &|/8, so

(48)

2 V() -\

V() ( y—ggN
<on [ e (1405 ) e

Assume firts that 2R < p(y). We split the integral in Jzg; = {¢ € R : 2R <
ly — & < p(y)} and Jzga = {€ € R : |y — &| > p(y)}. For the integral on Jaaq,
let kg € N such that 2*%~1R < p(y) < 2*R. Then using Lemma (4 and that

J32
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d>2-—d/q,
/ VO e E:/ V()
2R<|y—¢€|<p(y) ly — 5|2d 2 k—1R<|y—&|<2FR ly — &[22
1 1
S V(€)d§
~ QkR)d (2kR)d-2 /B 2k R

2—d
z (2 ’

2—d/q
51(1%) ,
R\ p(x0)
since p(y) =~ p(zo)-

On Js92, let p = log, C7, where Cj is the doubling constant of the potential V.
Then we have

V(©) (p@))Nd
/:c§>p(y) |y_§|2d72 |y_£| §

Z2W/ A

1 y—elZ2r+ plly — €124

2/\

= . 4,/ V(€)d
z:l k(2d— 2+N)p Y)2 2 B(y.2% p(y))
e 1 /
< V(§)dg
o(9)¢ ; 2k (2d=2+N =) () d— B(y,p(y))

1 W/ R \TYe
o L n
p(y)® — R\ p(x0)

choosing N big enough and using that p(y) ~ p(xo), R < p(x¢) and 2 — d/q < d.
(I

As an applycation of Lemma [6] Theorem [3]and Theorem [4] we obtain the follow-
ing inequalities for Ra.

Theorem 6. Let V € RH, for g > d/2, and § > 0. Then, for any weight w the
following inequalities hold.

(51) /\R2f|f’w < C’e/|f|prw
forl<p<qandr=(q/p),
(52) [1Rsf0 < o [ 1115+ 210,

for ¢ <p < oo and any Young function A € D,

(53) w({iRafl > A < S [ Irpsgw
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Proof. As we was say before, it only remains to check condition for the kernel
Ks. Let 29, y € R? and R > 0 such that R < |y — x| < 2R and R < p(z0). We
are going to check condition @ with s = ¢ using Lemma |§|,

1/q
( / Ka(z,y) — Kool y)%c)
B(zo,R/2)

C R s\ 4 1/q
< </B(zo,R/2) (IRz(VF(y,')XB<wo,R/4))(f17)|+Rd (p(xO)> > dﬂf) :

Dividing the integral in two terms it is straightforward that the second one gives
us the desired estimate. For the first one, recalling that Ry is a beunded operator
on L4 for 1 < ¢ < oo, and applying Lemma [d]

1/q
</ R2(Vr(ya')XB(mD,R/4))(‘T)|qu>
B(zo,R/2)

(54)

2—d/q
< RTWY <R) .
p(o)

For R, different inequalitiesshold true depending on ¢. For ¢ > d, Shen showed
in [10] that Ry and Ry are CalderénsZygmund operators. Moreover, their associ-
ated kernelsssatisfy the stronger size condition (see inequality (6.5) there).
Later onj condition was proved for the difference between K; and Kj o
(see [2] Lemma 3).

Therefore, ag'an application of Theorem [3] Corollary [I]and Theorem [4] we obtain
the following result.

O

Theorem 7. \Let V € RH, for ¢ > d/2, w >0, w € L}, . and > 0. Let py such

loc

that 1/po = (I/g@= 1/d)" Then, for 1 < p < po the following inequalities hold.

(5) [1rusrw < co [irattn,

for 1 <p<po andr = (po/p)’,

(56) [1Risrw < co [ 1w art)
for p(, < p < oo and any Young function A € D,

657) w({iRufl> ) < [ 1w,

Moreover, if ¢ > d, we have

(58) /|R1f|pw < Cy / I[P (MYw + MPw),
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for 1 <p < oo and any Young function A € Dy, and

(59) w({[Ruf] > 3 < & / M4,

(60) w({{RIf] > A}) < / MG,

for any Young function A € Up>1

Proof. Let V € RH, for ¢ > d/2. Suppose first that ¢ < d and let us show that
K satisfy conditions [(6])] and [(a])] for s = po with 1/py = 1/q — 1/d. For [(5])]
let 7o € R 0 < R < p(xg) and R < |y — | < 2R. Firsty we make use of
Lemma [5| Due to the boundedness of the classical fractional integral operator I;
and the reverse Holder property of V' we get that, for G defined in ,

(61)

po \ 1/Po po \ 1/po
[ (G yi)T e (1@ (A vl
B(zo,R/2)\ [T — Y| R B(zo, By Y\LB (zo, BN — 7|
C 1/po
< s ([ G i
]Rd

1/q
=\,
< Ve
Ri=! ( B(zo.R) )

Rd/q d
SO riT / v
R B(wo,R)

2-d/
< CR-/¥o (R > §
- p(wo)

where, inthe lastinequality, we have used Lemmad] As for the second term appear-
ing in Lemma [5 the sameiestimate holds easily. To check the size condition @
we make use ofthe following estimate that can be found on page 538 of [10]. For
every N > 0_there exists a constant C'y such that

=

o —yl\ Y1 1
o) Rggi<ov (1450 (e ).

with G as above. This estimate, together with a similar argument as in gives us
@ for s = pg. Therefore, inequalities , and follow as an application
of Theorems [3] and A

Next, suppose that g > d. In this case, it is known that K; satisfy the point-
wise estimates [(a )| and For the size condition we refer to inequality (6.5)
n [I0]. Condition |(bs)| was stated and proved in [2], Lemma 3. Thus, applying
now Corollary |[1| and Theorem [4] we obtain inequalities 7 and .

4.2. Operators V7YL™7. We consider, for V € RH,, ¢ > d/2, the family of oper-
ators of type VYL™7 for 0 < v < d/2. For each 7, we can write K., the kernel of
VYL™7, as

K’Y(x? y) = V’Y(SC)J'Y(:L" y)a
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where J, is the corresponding kernel of the fractional integral operator L=7. For
Jy we have the following estimate that can be found in [§], page 587. For each
N > 0 there exists Cy such that

S S O A
(63) |Jy(z,y)| < |x_y|d_2WCN(].+ @) ) )

We will show next that the size estimate for .J, gives us condition for K., with
s = q/v. In fract, let zo, y € R? and R such that |y — z9| < R/2. Applying
Lemmas [T] and [4] we get

(64)

v/4q
/ K (2, )]
R<|z—x0|<2R

—N/No via
< N (1+ i ) / Ve
RA==7 p(o) B(z0,2R)

—N/No%qN1 —v(2—d/q)
< g/ (1 4B ) { (1 ¥ M) .
~ p(zo) R

The above estimate together with Theorem [5| give us the following result.

Theorem 8. Let V € RH, for ¢ > dJ2, 0<~n <'d/2 and § > 0. Then, for any
weight w,

(65) [ 1z e Cadf 10w,
for1<p<q/y,r=1(q/(vp)) and
(66) [ 15t < c, [ 1w,

for (¢/A4) < p < 0.

4.3."Operators V'~1/2V L7, We consider the family of operators V~1/2VL~7
for 1/2'<n.£ 1 that includes the operator L~*VV'/2 which appeared first in [10].
In (cita) it-was shown that the associated kernel K7 can be written as the product
K7 (x,y) = V%2?(2)K,(2,y), with K, a fractional kernel of order v = 2y — 1,
satisfying for each NN,

O ( o — y|)‘N
67 K, (x, < 1+ ,
(67 K ()] |z — y[d=2r P(y)

if V€ RH, with ¢ > d and

1/po R _N
(68) / K, (,y)|Podz < CR™/Pot2r—1 (1 + ) 7
R<|z—y|<2R p(y)

when d/2 < ¢ < d, with py such that 1/pg =1/q— 1/d.
We will show now that these estimates imply Condition for s = p., such that

1 1 1\" 2v-1
69 —=(--=) + .
(69) Dy (q d> 2q
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Let g, y € RY and R > 0 such that |y — 29| < R/2. If ¢ > d, and hence

pi = 272;1, we may use estimate , condition and Lemmato get
"

(70)

/ K (2, )V () | P d
R<|z—z0|<2R
2y—1

Cn / s ( R )‘N
<N _ Ve 1+ ——
Rd=2v+1 ( B(z0,2R) ) p(xo)

—(v—1/2)(2—d/q) —N+N;(v—1/2)
SR_d/p:’ (14_'0(;;))) (1+i> .
P

2y—1
2q

(za)
If d/2 < q¢ < d, now we have pi = p% + 272—;1. Then, bysHolder’shinequality
together with and Lemma [4| as above we obtain
(71)

1/Pw
/ K () VI Y2 ()P d
R<|z—xz0|<2R
2v—1

1/170 2q
/ K@z | ([ v
R<|z—z0|<2R B(z0,2R)

—(v=1/2)(2~d/q) —N+Ni(v=1/2)
s (1520 () |
0

Applying the above estimates and Theorem 5| we obtain the following result.

IN

Theorem 9. Let V € RH, for ¢ > d/2, 1/2 <~y <1, and 8 > 0. Then if p, is
given by , for any weight w we have

(72) Jwcvrgre <o [1reate.
for 1 < p.< pg with r = (p,/p)’, and

(73) JiLrvvizre <o [1reate,
for pl, <p < oo.

5. ON LOCAL INTEGRABILITY OF T'f AND T*f

In this section we are going to apply the general results of Section 2] to weights
of the form w = xp. Studying maximal operators like Mg acting on such weights
we are going to get sufficient conditions on f to assume some local integrability of
Tf. We do that in the next lemma.

Lemma 7. Let 6 > 0, ¢ a Young function and Q = B(xq, p(xg)) then there exist
positive constants c1, ca, 01 and oo such that

() s s 152
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Proof. Let Q = B(xo, p(z0)) be a critical ball, § > 0 and ¢ a Young function. We
may suppose without loss of generality that ¢(1) = 1. Recalling that

—0

rB

Mixo@) =  sup <1+) Ixollos.
¢ B(xzp,rg)3z p(xB)

it is enough to consider B such that @ N B # (), otherwise ||xq| ¢, = 0, since

il L[ (e
Iallos =int {a: oz [ 0(32) <1}
1

. ) 1
oy o) <)

Let us consider first a ball B = B(zp,rp) with rp < p(zp),4andwz € B. Then
fory e BNQ,

& — 20| < & — y| + |y — 20| < 2rp + plao) < 2p(xr) Fp(ao)-

Also, since B is sub-critical, @ is critical and BN Q # ()\we have that p(zp) ~
p(y) =~ p(zp). Then,

(75) |z — x0| < Cplto),
for some C' > 0. Then if z ¢ Q = B(xo, Cp(zo)) we have

M¥<(xq)(z) = sup ixalle = 0

xT
rp<p(zp)

Ifxe@andBﬂQ#@,

. BN 1
Ixollhe =1nf{>\: | |B|Q'¢(A) - 1}

(76) ginf{A:¢<i> gl}
=1/67'(1) = 1.

So, taking thedupreme over all balls we have that if z € Q,

(77) M) < (1472 )

p(zp)

for any o > 0.
Next, we consider the operator

—0
MOBP (o) (z) = sup <1+TB) Yol
(78) [} ( Q)( ) Boe P(CUB) || Q||¢B
rg>p(zB)

As above, it is enough to consider balls B such that QN B # 0. Let y € Q N B,
then p(y) ~ p(zo). Using Lemma []]

(1 ! pgfm)e =¢ (1 y p<§>> e (1 * péfw)m

Let € B. Suppose first that « ¢ 2@Q), then

|z —xo| <[z —y|+ |y — 20| < 2rp + p(x0) < 2rp + |2 — 0|/2
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and hence |z — x¢| < 4rp. Therefore,

(1 + p(;BB)>9 <C (1 I |5;(—33:)0>9/N0 |

As before, we have ||xg|l¢,.5 < 1. Then, if z ¢ 2Q

o) < @ (14 B8

where o = 0/Ny.
On the other hand, if x € 2Q),

M (xq)(@) < My(xq)(@) < 1.

Then, since |z — zq|/p(z) < 2

9,glob - |z — 2ol \[7
ug e < 1+ gl

Using that M, g <M ;’C + M%8°b and collecting last estimates we obtain the
right hand side of . For the boundedness by below, given x we consider B, =
B(z, |x — zo| + p(x0)). Then x € B, and ||xgllg,5, = 1. Therefore,

p(xo)
(Tl

Remark 4. We obsérve that in particular Lemma 7] holds for all maximal operators
appearing in Theorem |3}, Theorem |4l Hence they satisfy inequality for some
constants c1, ¢z, 01 and g9 when applied to the function yp.

—0
x —+xo| + plx
M£($)><1+|.O—p(ﬁ> Ixells,B.

O

Propesition2. Let p > 1 and ¢ a Young function. There exists 0 > 0 such that
for any bali@ = B(o, plxo))

(79) [ 112 xa) < o0
if and only if there exists o > 0 such that
s
(80) /7 < o0
(1 +[=[)”

Proof. Let p > 1 and ¢ a Young function. Let @ = B(zg, p(x0)) a critical ball. It is
straightforward that there are constants ¢ and ¢ depending on xy and p such that

] _
T ot0) T o)

Then, the equivalence between conditions and follows from equation
above and Lemma
O
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Theorem 10. Let 1 < p < co and T an operator such that for some Young function
¢ and for all 0 there exists a constant C' such that

(82) / TfPw < C / P Mo,

for any weight w. Then, if a function f satisfy , TfelLl . Inparticular Tf
is finite almost everywhere.

Proof. Let 1 <p < oo and T as stated. Let f be a function satisfying for some
o > 0. Then, applying Proposition [2| there exists some 6§ > 0 such that holds
for any critical ball Q.

Let B be a ball in R?. According to Proposition [1| we can/cover, B by a finite
number of critical balls By,...By. Using the hypothesis on the operator for such
97

i ZE JEZE

N
< OZ/|f|”M£XBi <.00.
=1
0

For operators that satisfy a weak type inequality for p,= 1 we obtain an analogous
result following the same lines as inthe proof of Theorem [10]

Theorem 11. Let T be an operator such,that{for some Young function ¢ and for
all 8 there exists a constant/C" such that

w({JEf]'>M) SC/|f|M£w, for all A >0,

1,00
loa - AN

for all weightw. Then, if a function f satisfy withp =1, Tf € L
particular T f is_finite almost everywhere.

The above results can be applied to all operators considered in Section [4] since,
as it was,shown there, theorems of Section [2| hold in those cases. In particular
we point out that for Ry and R} we can apply Theorem for 1 < p < oo, and
Theorem itV € RH, with ¢ > d. As for the case d/2 < ¢ < d, the conclusion
holds for 1 < p'<rpy and p > py respectively. On the other hand, Theorem [10{ and
Theorem 11| can be applied to Rs for 1 < p < ¢, when ¢ > d/2.

Similarly VL=, V1/2L=1 and V'/2L~1/2 fall under the scope of Theorem [10| for
1<p<gq,1<p<p;andl <p < 2q, respectively (see Theoremand Theorem@.

In [I0], Shen obtained LP-estimates for derivatives of solutions of differential
equations related to Schrodinger operator as a consequence of LP-continuity of
Riesz-Schrodinger Transforms (see Corollary 0.9 and Corollary 0.10). Here, with
our results, we can give qualitative information on their local integrability.

Corollary 2. Suppose V. € RH, for some ¢ > d/2. Assume that —Au + Vu = f
in R, with f satisfying for some o > 0 and some p > 1. Then,
(1) if 1<p<gq, VuelLl ,
(2) ifl<p<gq, Vuell

loc 7

(3) if L <p<p, VV/*Vue L

loc?
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with py such that 1/py = (1/q —1/d)* +1/2q.

Proof. We just apply Theorem |10/ to the operators V2L~ VL~ and V/2VL~1.
O

Corollary 3. Suppose V. € RH, for some q > d/2 and let pjy < p < po, with po
such that 1/po = (1/q — 1/d)*. Assume that —Au+ Vu =V - F in R, for a field
F with |F| satisfying for some o > 0.

(1) If pjy < p < po, then
(2) If ply < p < 2q, then VY/?u € LV

loc”

Proof. We will show only item . The proof of is similat.nLet u = L-1VE.
Then Vu = R1 (R} - F'). Then in order to get that Vu € Li _ (due to Theorem

loc

it will be enough to check that the operators T; = Ry o (RY), satisfy inequality
(82). In fact, if p{, < p < po, then

[ mvws [ 1R
< [1rrggasta

for any v > 1. Choosing v > r, it follows easily M?(MPw) < M%w, and then
holds.

(83)

O
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