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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE

FOR RIESZ-SCHRÖDINGER TRANSFORMS

B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Abstract. In this work we are concerned with Fefferman-Stein type inequal-

ities. More precisely, given an operator T and some p, 1 < p <∞, we look for
operators M such that the inequalityˆ

|Tf |pw ≤ C
ˆ
|f |pMw

holds true for any weight w. Specifically, we are interested in the case of T
being any first or second order Riesz transform associated to the Schrödinger

operator L = −∆+V , with V a non-negative function satisfying an appropriate

reverse-Hölder condition. For the Riesz-Schrödinger transforms ∇L−1/2 and
∇2L−1 we make use of a result due to C. Pérez where this problem is solved

for classical Calderón-Zygmund operators.

1. Introduction

In the theory of weighted Lp-inequalities a relevant is the following: given an
operator T and 1 < p <∞, to find a positive operator M such that inequalities of
the form

(1)

ˆ
|Tf |pw ≤

ˆ
|f |pMw,

hold for some reasonable set of functions f of Rd, d ≥ 1, and a general weight w,
i.e. w ∈ L1

loc(Rd), w ≥ 0. However, the above inequality become more interesting
when Mw is finite a.e. and to that end it is desirable to get the operator M as
small as possible.

The first appearance of such inequality goes back to the classical result of
Fefferman-Stein ([7]) for T = M = M , the Hardy-Littlewood maximal operator,
namely ˆ

Rd
|Mf |pw ≤

ˆ
Rd
|f |pMw,

for 1 < p <∞.
When T is a singular integral operator, Córdoba and Fefferman showed in [4] that

inequality 1 holds taking M = Mr = (M(wr))1/r, for any 1 < r <∞. However, it
is known that for the Hilbert transform that inequality fails for r = 1.

Later, Wilson in [11] obtained inequalities for 1 < p < 2 and M = M ◦ M
improving the result in [4] since M ◦M(w) ≤ (M(wr))1/r, for all r > 1.

In 1995, C. Pérez provided a full answer to this question with different tech-
niques including weak type inequalities for p = 1. He deals with maximal operators

2010 Mathematics Subject Classification. Primary 42B20, Secondary 35J10.
Key words and phrases. Schrödinger operator, regularity spaces, weights.

1

IMAL PREPRINT # 2018-0042
                              ISSN 2451-7100 
Publication date: October  26, 2018

Prep
rin

t



2 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

associated to averages with respect to a Young function which can be smaller than
Mr.

Below, we state the precise statements since they are essential to our work.
By a Young function A we mean A : [0,∞) → [0,∞) continuous, convex, in-

creasing and such that A(0) = 0. To define a maximal operator associated to a
Young function A we introduce the A-average of a function f over a ball B as

(2) ‖f‖A,B = inf

{
λ > 0 :

1

|B|

ˆ
B

A

(
|f(t)|
λ

)
dt ≤ 1

}
.

Then, the maximal operator associated to a Young function A is

(3) MAf(x) = sup
B3x
‖f‖A,B .

For 1 < p <∞, we define Dp as the class of Young functions such that

(4)

ˆ ∞
c

(
t

A(t)

)p′−1
dt

t
<∞

for some c > 0.
The following theorem appears as Theorem 1.5 in [9]. There it is stated for

singular integral operators. But according to the comment in Section 3 there, it
also holds for Calderón-Zygmund operators as it is stated next.

Theorem 1. Let 1 < p <∞, and let T be a Calderón-Zygmund operator. Suppose
that A ∈ Dp. Then there exists a constant C such that for each weight w

(5)

ˆ
|Tf |pw ≤ C

ˆ
|f |pMAw.

The following theorem deals with the endpoint case p = 1 and it is also due to
C. Pérez. Here we state a version that can be found in [5] as Theorem 9.31.

Theorem 2. Let T be a Calderón-Zygmund operator and let A ∈
⋃
p>1Dp. Then

there exists a constant C such that for each weight w and for all λ > 0 we have

(6) w({y ∈ Rd : |Tf(y)| > λ}) ≤ C

λ

ˆ
|f(y)|MAw(y)dy.

Some examples of functions on the class Dp are A(t) = t logp−1+ε(1 + t) or

A(t) = t logp−1(1 + t) logp−1+ε(log(1 + t)) for any ε > 0. As for the class
⋃
p>1Dp,

we can take A(t) = t logε(1 + t) for any ε > 0.
In this work we attempt to provide results of this type for the first and sec-

ond order Riesz transforms associated to the Schrödinger differential operator L =
−∆ + V on Rd, d ≥ 3 and with V satisfying a reverse Hölder inequality of order
q, q > d/2, that is, there exists C such that

(7)

(
1

|B|

ˆ
B

V q
)1/q

≤ C 1

|B|

ˆ
B

V,

holds for every ball B in Rd. From now on, if a function V satisfy (7) above we
will say that V ∈ RHq.

The study of these operators under such assumptions on V , was started by Shen
in [10], where he proves Lp boundedness for most of the operators we will be con-
cerned with. As he observed, when q > d, the first order Riesz transforms ∇L−1/2
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 3

are standard Calderón-Zygmund operators. Otherwise, they are not necessarily
bounded on Lp for all p, 1 < p <∞. The case of the second order Riesz transforms
given by ∇2L−1 is even worse since one can assures boundedness only for 1 < p < q.
However, we may expect in inequality (1) a smaller operator M than those given
by Pérez, since Schrödinger Riesz transforms have kernels with a better decay at
infinity. Also, in this context, kernels may have no symmetry and hence we might
obtain different results for T and its adjoint.

Essentially, we will be considering two types of first and second order Riesz
transforms: one involving only derivatives ∇L−1/2 and ∇2L−1, and the others
involving the potential V , as V 1/2L−1/2, V L−1 and V 1/2∇L−1. In the first case
we will get our results by locally comparing with the classical Riesz transforms,
allowing us to apply the results of C. Pérez. Let us point out that for ∇L−1/2 such
comparison estimate appeared already in [10] but that is not the case for ∇2L−1, so
it must be provided. We do that in Lemma 6 and we believe it might be useful for
other purposes. As for those operators involving V we shall require only estimates
on the size of their kernels.

We would like to make a remark about the values of p for which inequalities like
(1) will be obtained. In all instances the operatorM on the right hand side satisfies
M(1) ≤ 1 and therefore our results would imply boundedness on Lp, so the range
of p should be limited as in the original work of Shen.

The paper is organized as follows. In the next section we state some general
theorems in a somehow abstract framework but having in mind the Schrödinger
Riesz transforms mentioned above, leaving all the proofs and technical lemmas to
Section 3

The results include strong type (p, p) inequalities like (1) as well as weak type
(1, 1) estimates for a suitable class of operators and their adjoints. Let us remark
that inequalities for the adjoint operators are not obtained by duality. In fact, if we
proceed in that way we would not arrive to an inequality with an arbitrary weight
on the left hand side as we wanted.

Section 4 is devoted to apply the general theorems of Section 2 to specific opera-
tors associated to Schrödinger semigroup: ∇L−1/2, ∇2L−1, V αL−α, V α−1/2∇L−α,
with α in a range depending on the operator. In order to check that their kernels
satisfy the required assumptions, sometimes we make use of known estimates by
in other occasions we must prove them. In particular we prove a local comparison
between the kernels of ∇2(−∆)−1 and ∇2L−1 stated in Lemma 6.

Finally in the last section we use the above results to get sufficient conditions
on a function f to ensure local integrability of Tf , where T is any of the operators
of Section 4. Consequently we obtain a large class of functions f such that Tf is
finite a.e.. In fact, f is allowed to increase polynomially. When this results are
applied to the Riesz-Schrödinger transforms they provide qualitative information
about solutions of some differential equations involving L.

2. General Results

In this section we will consider the space Rd equipped with a critical radius
function ρ : Rd → (0,∞), that is, a function whose variation is controlled by the
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4 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

existence of C0 and N0 ≥ 1 such that

(8) C−10 ρ(x)

(
1 +
|x− y|
ρ(x)

)−N0

≤ ρ(y) ≤ C0ρ(x)

(
1 +
|x− y|
ρ(x)

) N0

N0+1
.

It is worth noting that if ρ is a critical radius function , then for any γ > 0 the
function γρ is also a critical radius function. Moreover, if 0 < γ ≤ 1 then γρ
satisfies (8) with the same constants as ρ.

The next lemma is a useful consequence of the previous inequality.

Lemma 1 (see [3], Corollary 1 ). Let x, y ∈ B(x0, R0). Then:

i) There exists C > 0 such that

1 +
R0

ρ(y)
≤ C

(
1 +

R0

ρ(x0)

)N0

.

ii) There exists C > 0 such that

1 +
r

ρ(y)
≤ C

(
1 +

R0

ρ(x0)

)γ (
1 +

r

ρ(x)

)
,

for all r > R0, where γ = N0

(
1 + N0

N0+1

)
.

Associated to a critical radius function ρ we can define the following maximal
operators. First, let us denote Fρ the set of all balls B(x, r) such that r ≤ ρ(x).
Then, for f a locally integrable function, and A a Young function, we set

(9) M loc
A f(x) = sup

B3x
B∈Fρ

‖f‖A,B ,

and for θ ≥ 0,

(10) Mθ
Af(x) = sup

B(x0,r0)3x

(
1 +

r0
ρ(x0)

)−θ
‖f‖A,B .

As usual, when A(t) = tr we use the notation M loc
r and Mθ

r respectively.
Now, we are in position to state our main theorems.

Theorem 3. Let T be a linear operator with associated kernel K. Suppose that for
some s > 1, K satisfies the following estimates

(as) For each N > 0 there exists CN such that(ˆ
R<|x0−x|<2R

|K(x, y)|sdx

)1/s

≤ CNR−d/s
′
(

1 +
R

ρ(x0)

)−N
,

whenever |y − x0| < R/2.
(bs) There exists a Calderón-Zygmund operator T0 with kernel K0 such that, for

some C and δ > 0,(ˆ
R<|x0−x|<2R

|K(x, y)−K0(x, y)|sdx

)1/s

≤ CR−d/s
′
(

R

ρ(x0)

)δ
,

whenever |y − x0| < R/2 with R ≤ ρ(x0).
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 5

Then, for each θ ≥ 0, the operator T and its adjoint T ? satisfy the following
inequalities for any weight w,

(11)

ˆ
|Tf |pw ≤ Cθ

ˆ
|f |pMθ

rw,

for 1 < p < s and r = (s/p)′,

(12)

ˆ
|T ?f |pw ≤ Cθ

ˆ
|f |p(M loc

A +Mθ)w,

for s′ < p <∞ and any Young function A ∈ Dp.

Remark 1. Assumption (as) can be seen as a size condition with a kind of “decay
at infinity”, while condition (bs) tells us that K has the same singularity as a
Calderón-Zygmund kernel. Nevertheless, both conditions on K are not symmetric
since integration is always made in the first variable. Consequently we do not get
the same kind of estimates for T and T ?.

If the kernel K satisfies point-wise estimates we obtain a sharper result for T ,
as a corollary of the previous theorem.

Corollary 1. Let T be a linear operator with associated kernel K and T0 be a
Calderón-Zygmund operator with kernel K0. Suppose that K satisfy the following
estimates.

(a∞) For each N > 0 there exists CN such that

|K(x, y)| ≤ CN
|x− y|d

(
1 +
|x− y|
ρ(x)

)−N
.

(b∞) There exist C and δ > 0 such that

|K(x, y)−K0(x, y)| ≤ C

|x− y|d

(
|x− y|
ρ(y)

)δ
.

Then, T and its adjoint T ? satisfy (12) for 1 < p < ∞ and any Young function
A ∈ Dp.

Corollary 1 follows inmediately from Theorem 3 since conditions (a∞) and (b∞)
imply conditions (as) and (bs) for all 1 < s < ∞, and are symmetric in x and y.
For the limiting case p = 1 we can obtain the following weak-type inequalities.

Theorem 4. Let T be a linear operator with associated kernel K and let T0 be
a Calderón Zygmund operator with kernel K0. Suppose that for some s > 1, K
satisfies conditions (as) and (bs) Then, for θ ≥ 0 and w ∈ L1

loc, w ≥ 0, T satisfies

(13) w({|Tf | > λ}) ≤ Cθ
λ

ˆ
|f |Mθ

s′(w), for λ > 0.

Further, if T satisfies (a∞) and (b∞), then, for any Young function A ∈
⋃
p>1Dp,

(14) w({|Tf | > λ}) ≤ Cθ
λ

ˆ
|f |
(
M loc
A +Mθ

)
w, for λ > 0.

Moreover, inequality (14) also holds for T ?.
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6 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

The associated kernels of some operators related to L satisfy condition (bs) with-
out subtracting K0 and hence condition (as) and (bs) can be unify. For this type
of operators we can get sharper inequalities stated in the following theorem.

Theorem 5. Let T be a linear operator with associated kernel K. Suppose that for
some s > 1 and δ > 0, K satisfies the following condition:

(cs) For each N > 0, there exists CN such that(ˆ
R<|x0−x|<2R

|K(x, y)|sdx

)1/s

≤ CNR−d/s
′
(

1 +
ρ(x0)

R

)−δ (
1 +

R

ρ(x0)

)−N
,

whenever |y − x0| < R/2.

Then, for any θ ≥ 0 and any weight w, there exists Cθ such that T satisfies (11)
for 1 ≤ p < s and

(15)

ˆ
|T ?f |pw ≤ Cθ

ˆ
|f |pMθw,

for s′ < p <∞.

3. Proofs

Before giving the proofs of the theorems above we need to state some techni-
cal lemmas that will be useful in the sequel. The first one is a consequence of
inequality (8) and can be found in [6].

In some proofs we will use the notation . instead of ≤ to denote that the right
hand side of the inequality is greater up to constants that may depend on some
parameters specified when necessary.

Proposition 1. There exists a sequence of points {xj}j∈N such that the family of
critical balls Qj = B(xj , ρ(xj)) satisfies

i)
⋃
j∈N

Qj = Rd

ii) There exist constants C and N1 such that for any σ ≥ 1,
∑
j∈N

χσQj ≤ CσN1 .

In general, maximal operators can not be controlled point-wisely by localized
ones. Nevertheless, this is possible if we are considering functions supported on
sub-critical balls and for points close enough to the support. In the next lemma we
determine how much a critical ball must be contracted in order to have that kind
of control. Such contraction of critical balls is needed to arrive to inequality (12)
of Theorem 3.

Lemma 2. Let A be a Young function and B0 any critical ball. There exists γ0 > 0
such that if 0 < γ ≤ γ0 then for any function f ,

(16) MA(fχγB0)(x) ≤ CM loc
A (f)(x),

for all x ∈ 2γB0. Here, the constant C only depends on the dimension d and the
Young function A.

Proof. Assume x ∈ 2γB0 with γ to be determined later. It is enough to consider
balls centered at x; in fact, it is not difficult to see that if M c

A is the centered
maximal function, then MA(f)(x) ≤ CM c

A(f)(x) for any function f with C that
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 7

only depends on d and A. Let x0 be the center of B0 and suppose first that
r > 3γρ(x0). Therefore B(x, r) ⊃ B(x, 3γρ(x0)) ⊃ γB0 and thus, for any non-
negative function g,

1

|B(x, r)|

ˆ
B(x,r)∩γB0

g ≤ 1

|B(x, 3γρ(x0))

ˆ
γB0

g ≤ 1

|B(x, 3γρ(x0))|

ˆ
B(x,3γρ(x0))|

g.

Now, if λ > 0, applying the above inequality to g = A(|f |/λ) we have, for
r ≥ 3γρ(x0),

‖fχγB0
‖A,B(x,r) ≤ ‖f‖A,B(x,3γB0).

Therefore, if x ∈ 2γB0,

M c
A(fχγB0)(x) ≤ sup

r≤3γρ(x0)

‖f‖A,B(x,r).

To complete the proof, it is enough to take γ such that 3γρ(x0) ≤ ρ(x) for all
x ∈ 2γB0.

From inequality (8), we have ρ(x0) ≤ ρ(x)C0(1 + 2γ)N0 and thus γ should be
taken such that

(17) 3γC0(1 + 2γ)N0 ≤ 1.

Since the left hand side goes to 0 when γ goes to 0, there exists γ0 such that for
0 < γ ≥ γ0 the above inequality holds.

�

Conditions (as) and (bs) are written in a suitable way to prove inequalities
concerning T ?. To prove the inequalities for T it will be easier to use the following
equivalent conditions.

Lemma 3. For any s > 1, conditions (as) and (bs) are equivalent to, respectively,
to the following conditions.

(a′s) For each N > 0 there exists CN such that(ˆ
B(x0,R/2)

|K(x, y)|sdx

)1/s

≤ CNR−d/s
′
(

1 +
R

ρ(x0)

)−N
,

whenever R < |y − x0| < 2R.
(b′s) There exist C and ε > 0 such that(ˆ

B(x0,R/2)

|K(x, y)−K0(x, y)|sdx

)1/s

≤ CR−d/s
′
(

R

ρ(x0)

)ε
whenever R < |y − x0| < 2R and R ≤ ρ(x0).

Remark 2. Observe that (as) holds true replacing the ring, R < |x−x0| < 2R with
R < |x − x0| < CR for any constant C > 1, with the constant CN depending on
C. Similarly in (a′s) the ring R < |y−x0| < 2R may be replaced by R < |y−x0| <
CR. In fact, it is only a matter of applying (as) or (a′s) a finite number of times
deppending on C.

The same comment applies to (bs) and (b′s).

Proof of Lemma 3. We will show first that (as) implies (a′s). Let K be a kernel
satisfying (as) for some s > 1, and let x0 ∈ Rd, R > 0 and y such that R <
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8 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

|x0 − y| < 2R. It is easy to check that B(x0, R/2) ⊂ {x : R/2 < |x− y| < 4R}. So,
applying condition (as) we get that(ˆ

B(x0,R/2)

|K(x, y)|sdx

)1/s

≤

(ˆ
R/2<|y−x|<4R

|K(x, y)|sdx

)1/s

≤ CNR−d/s
′
(

1 +
R

ρ(y)

)−N
≤ CNR−d/s

′
(

1 +
R

ρ(x0)

)−Ñ
,

where in the last inequality we used Lemma 1.
To see that (a′s) implies (as) let x0 ∈ Rd, R > 0 and y ∈ B(x0, R/2). The ring

{x : R < |x−x0| < 2R} can be covered by M balls (depending on d), of radius R/4
and centres xi, with R < |xi − x0| < 2R, for i = 1, . . . ,M . For each of these balls
we can check that R/2 < |xi − y| < 5R/2. Applying condition (a′s) and Remark 2
on each ball,(ˆ

R<|y−x|<2R

|K(x, y)|sdx

)1/s

≤
M∑
i=1

(ˆ
B(xi,R/4)

|K(x, y)|sdx

)1/s

≤
M∑
i=1

CNR
−d/s′

(
1 +

R

ρ(xi)

)−N

≤ CNR−d/s
′
(

1 +
R

ρ(x0)

)−Ñ
,

where we used again Lemma 1 in the last inequality.
We can omit the proof of the equivalence of (bs) and (b′s) since it follows the

same lines as above.
�

Proof of Theorem 3. Let T be a linear operator with kernelK satisfying (as) and (bs),
for some s > 1 and some Calderón-Zygmund operator T0 with kernel K0. Let w ≥ 0,
w ∈ L1

loc, θ ≥ 0, 1 < p < s and let A be a Young function satisfying (4).
We will prove first inequality (11). Let γ0 be as in Lemma 2. For some γ ≤ γ0, to

be chosen later, let {Qn} be the decomposition of the space given in Proposition 1
for the critical radius function γρ. Then we write

ˆ
|Tf |pw ≤

∑
n∈N

ˆ
Qn

|Tf |pw

=
∑
n∈N

ˆ
Qn

|T (fχ2Qn) + T (fχ2Qcn)± T0(fχ2Qn)|pw

.
∑
n∈N

ˆ
Qn

|T (fχ2Qn)− T0(fχ2Qn)|pw +
∑
n∈N

ˆ
Qn

|T (fχ2Qcn
)|pw

+
∑
n∈N

ˆ
Qn

|T0(fχ2Qn)|pw = I + II + III.

(18)
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 9

For III, since T0 is a Calderón-Zygmund operator, we apply Theorem 1 and
Lemma 2 to get

III =
∑
n∈N

ˆ
|T0(fχ2Qn)|pwχQn

.
∑
n∈N

ˆ
|fχ2Qn |MA(wχQn)

.
∑
n∈N

ˆ
2Qn

|f |pM loc
A w

.
ˆ
|f |pM loc

A w,

for any Young function A ∈ Dp.
For k ∈ Z we denote Qkn = 2kQn. To estimate II we use Minkowski’s and

Hölder’s inequalities to obtain

II =
∑
n∈N

ˆ
Qn

|T (fχ(2Qn)c)|
pw

=
∑
n∈N

ˆ
Qn

[ˆ
(2Qn)c

|K(x, y)||f(y)|dy

]p
w(x)dx

≤
∑
n∈N

[ˆ
(2Qn)c

|f(y)|
(ˆ

Qn

|K(x, y)|pw(x)dx

)1/p

dy

]p

≤
∑
n∈N

[∑
k∈N

ˆ
Qk+1
n \Qkn

|f(y)|
(ˆ

Qn

|K(x, y)|sdx
)1/s(ˆ

Qn

wr(x)dx

)1/rp

dy

]p
,

where r = (s/p)′.
Next we apply condition (a′s) forK, since by Lemma 3 condition (as) is equivalent

to (a′s), then for each N we have

II .
∑
n∈N

[∑
k∈N
|Qkn|−1/s

′
2−kN

ˆ
Qkn

|f(y)|
(ˆ

Qn

wr
)1/rp

dy

]p

.
∑
n∈N

∑
k∈N
|Qkn|−1/s

′+1/p′2−kN

ˆ
Qkn

|f(y)|p
(ˆ

Qkn

wr

)1/r

dy

1/p

p

.
∑
n∈N

∑
k∈N

2−k(N−θ/p)

ˆ
Qkn

|f(y)|p 2−kθ

(
1

|Qkn|

ˆ
Qkn

wr

)1/r

dy

1/p

p

.
∑
n∈N

∑
k∈N

2−k(N−θ/p)

(ˆ
Qkn

|f(y)|pMθ
rw(y)dy

)1/p
p ,

with constants that may depend on N .
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10 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Finally, using Hölder’s inequality in the sum over k and choosing N = N1 −
θ/p+ 1, where N1 is the constant appearing in Proposition 1, we arrive to

II .
∑
n∈N

[∑
k∈N

2−k(N1+1)

ˆ
Qkn

|f |pMθ
rw

][∑
k∈N

2−k(N1+1)

]p/p′

.
∑
k∈N

2−k(N1+1)

ˆ
Rd

(∑
n∈N

χQkn

)
|f |pMθ

rw

.
ˆ
Rd
|f |pMθ

rw,

with constants depending on N1 and θ and p.
It only remains to estimate I. Let Q(x, y) = K(x, y) − K0(x, y). For x ∈ Qn,

we have 2Qn ⊂ B(x, ρ(x)) due to our choice of γ (see inequality (17)), therefore we
may write

I =
∑
n∈N

ˆ
Qn

|T (fχ2Qn)− T0(fχ2Qn)|pw

≤
∑
n∈N

ˆ
Qn

[ˆ
2Qn

|Q(x, y)||f(y)|dy
]p
w(x)dx

≤
∑
n∈N

ˆ
Qn

[ˆ
B(x,ρ(x))

|Q(x, y)||f(y)|dy

]p
w(x)dx

≤
ˆ
Rd
|h(x)|pw(x)dx = ‖h‖p

Lp(Rd,w)
,

(19)

where

h(x) =

ˆ
B(x,ρ(x))

|Q(x, y)||f(y)|dy.

For a fixed k and for any n we can take 2dk disjoint balls of the form Bln,k =

B(xln,k, 2
−kγρ(xn)) such that for σ >

√
d,

Qn ⊂
2dk⋃
l=1

σBln,k ⊂ 2σQn.

Moreover, there exists a constant depending only on σ and d such that,

2dk∑
l=1

χσBln,k ≤ Cd,σχ2σQn .

Therefore, from Proposition 1, the family of balls {σBln,k}l,n covers Rd and∑
l,n

χσBln,k ≤ Cd,σ,ρ.

Let us fix σ = 2
√
d. It is possible to choose γ small enough such that if x ∈ σBln,k

and 2−k−1ρ(x) ≤ |y − x| ≤ 2−kρ(x) then

y ∈ Eln,k = {y : 4
√
dγ2−kρ(xn) ≤ |y − xln,k| ≤ βγ2−kρ(xn)}.
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 11

for some constant β > 4
√
d depending only on ρ and d 1.

Now, we write h in the following way

h(x) =
∞∑
k=0

hk(x) =
∞∑
k=0

ˆ
B(x,2−kρ(x))\B(x,2−k−1ρ(x))

|Q(x, y)||f(y)|dy.

So, for this covering of the space described above, we may write

‖hk‖pLp(w) ≤
∑
n,l

ˆ
2
√
dBln,k

[ˆ
B(x,2−kρ(x))\B(x,2−k−1ρ(x))

|Q(x, y)||f(y)|dy

]p
w(x)dx

≤
∑
n,l

ˆ
2
√
dBln,k

[ˆ
Eln,k

|Q(x, y)||f(y)|dy

]p
w(x)dx

≤
∑
n,l

ˆ
Eln,k

|f(y)|

(ˆ
2
√
dBln,k

|Q(x, y)|pw(x)dx

)1/p

dy

p

≤
∑
n,l

ˆ
Eln,k

|f(y)|

(ˆ
2
√
dBln,k

|Q(x, y)|sdx

)1/s(ˆ
2
√
dBln,k

wr(x)dx

)1/(rp)

dy

p ,

(20)

where we have used Minkowski’s and Hölder’s inequalities in the last two steps.
Now, using condition (b′s) for Q(x, y) (See Remark 2), we arrive to

‖hk‖pLp(w) .
∑
n,l

(2−kρ(xn))−dp/s
′
2−kδp

ˆ
βBln,k

|f(y)|

(ˆ
βBln,k

wr(x)dx

)1/(rp)

dy

p

. 2−kδp
∑
n,l

ˆ
βBln,k

|f(y)|p
(

1

|βBln,k|

ˆ
βBln,k

wr(x)dx

)1/r

dy

. 2−kδp
∑
n,l

ˆ
βBln,k

|f(y)|pMθ
rw(y)dydy

. 2−kδp‖f‖p
Lp(Mθ

rw)
.

(21)

Finally,

‖h‖Lp(w) ≤
∑
k≥0

‖hk‖Lp(w) .
∑
k≥0

2−kδ‖f‖Lp(Mθ
rw) . ‖f‖Lp(Mθ

rw).(22)

Using the estimates obtained for I, II and III we arrive to inequality (11).
Now, let us prove inequality (12). Proceeding as in (18) we getˆ

|T ?f |pw . I? + II? + III?,

and we can estimate III? in the same way as III, since T ? is also a Calderón-
Zygmund operator.

1For example, it works taking γ = 1

2C0(5
√
d)N0+1 and β = 2C2

0 (5
√
d)N0+2
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12 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

For II?, we write

II? =
∑
n∈N

ˆ
Qn

|T ?(fχ(2Qn)c)|
pw

=
∑
n∈N

ˆ
Qn

(ˆ
(2Qn)c

|K(x, y)||f(x)|dx

)p
w(y)dy.

(23)

If y ∈ Qn we may use Hölder inequality and condition (as) to obtainˆ
(2Qn)c

|K(x, y)||f(x)|dx

≤
∑
k≥1

(ˆ
Qk+1
n \Qkn

|K(x, y)|p
′
dx

)1/p′ (ˆ
Qk+1
n

|f |p
)1/p

.
∑
k≥1

(ˆ
Qk+1
n \Qkn

|K(x, y|sdx

)1/s(ˆ
Qk+1
n

|f |p
)1/p

|Qkn|1/s
′−1/p

.
∑
k≥1

2−kN
(

1

|Qk+1
n |

ˆ
Qk+1
n

|f |p
)1/p

.

∑
k≥1

2−kN

|Qk+1
n |

ˆ
Qk+1
n

|f |p
1/p ∑

k≥1

2−kN

1/p′

.

∑
k≥1

2−kN

|Qk+1
n |

ˆ
Qk+1
n

|f |p
1/p

.

(24)

Therefore,

II? .
∑
n∈N

∑
k∈N

2−kN
1

|Qk+1
n |

ˆ
Qk+1
n

|f |p
ˆ
Qk+1
n

w(y)dy

.
∑
n∈N

∑
k∈N

2−k(N−θ)
ˆ
Qk+1
n

|f |pMθw

.
∑
k∈N

2−k(N−θ)
ˆ
Rd

(∑
n∈N

χQk+1
n

)
|f |pMθw

.
ˆ
Rd
|f |pMθw,

(25)

choosing N = N1 + θ + 1.
It only remains to estimate I?. Proceeding as in (19), we have

I? =
∑
n∈N

ˆ
Qn

|T ?(fχ2Qn)− T ?0 (fχ2Qn)|pw ≤ ‖h?‖pLp(w),

where

h?(y) =

ˆ
B(y,ρ(y))

|Q(x, y)||f(x)|dx,
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 13

and write

h?(y) =
∞∑
k=0

h?k(y) =
∞∑
k=0

ˆ
B(y,2−kρ(y))\B(y,2−k−1ρ(y))

|Q(x, y)||f(x)|dx.

Now, for a fixed k, using Hölder’s inequality and denoting B(y, 2−kρ(y)) = Bky ,
we have

(26) h?k(y) ≤ C

(ˆ
Bky\B

k−1
y

|Q(x, y)|sdx

)1/s(ˆ
Bky

|f |p
)1/p

(2−kρ(y))d/((s/p
′)′p′).

Now for a fixed k, we consider again the covering {B(xln,k, 2
√
dγ2−kρ(xn))}n,l.

Using condition (bs), we obtain

‖h?k‖
p
Lp(w) ≤

∑
n,l

ˆ
Bln,k

|h?k(y)|pw(y)dy

.
∑
n,l

(ˆ
βBln,k

|f |p
)

(2−kρ(yj))
dp(1/s′−1/p)

ˆ
Bln,k

(ˆ
Eln,k

|Q(x, y)|sdx

)p/s
w(y)dy

.
∑
n,l

(ˆ
βBln,k

|f |p
)

2−kpδ

(2−kρ(yn))d

ˆ
βBln,k

w

.
∑
n,l

2−kpδ
ˆ
βBln,k

|f(x)|p
(

1

|βBln,k|

ˆ
βBln,k

w

)
dx

. 2−kpδ
∑
n,l

ˆ
βBln,k

|f |pMθw

. 2−kpδ‖f‖p
Lp(Mθw)

.

(27)

So, as it was done in (22),

(28) ‖h?‖Lp(w) ≤ Cθ
∑
k

‖h?k‖Lp(w) . ‖f‖Lp(Mθw).

Using the estimates obtained for I?, II? and III? we arrive to inequality (12).
�

Remark 3. It is worth noting that the estimates obtained for I and II also hold
for the case p = 1. Following the same ideas as above we arrive to

(29)
∑
n∈N

ˆ
Qn

|T (fχ(2Qn)c)|w ≤ Cθ
ˆ
Rd
|f |Mθ

s′(w),

(30)
∑
n∈N

ˆ
Qn

|T (fχ2Qn)− T0(fχ2Qn)|w ≤ Cθ
ˆ
Rd
|f |Mθ

s′(w).

Now we prove the weak-type inequalities stated in Theorem 4

Proof of Theorem 4. Let T be a linear operator with kernel K and w ∈ L1
loc, w ≥ 0.

Suppose first that K satisfy conditions (as) and (bs) for some 1 < s <∞. Consider
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14 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

again {Qn}n∈N, the partition of the space associated to γρ, with γ chosen as in the
proof of Theorem 3. For λ > 0, we may write

w({|Tf | > λ}) ≤
∑
n∈N

w({x ∈ Qn : |Tf(x)| > λ})

≤
∑
n∈N

w({x ∈ Qn : |T (fχ2Qn)(x)− T0(fχ2Qn)(x)| > λ/3})

+
∑
n∈N

w({x ∈ Qn : |T (fχ(2Qn)c)(x)| > λ/3})

+
∑
n∈N

w({x ∈ Qn : |T0(fχ2Qn)(x)| > λ/3})

= I + II + III.

(31)

To estimate III we can use this time Theorem 2 together with Lemma 2 to get

III =
∑
n∈N

w({x ∈ Qn : |T0(fχ2Qn)(x)| > λ/3})

≤
∑
n∈N

wχQn({x : |T0(fχ2Qn)(x)| > λ/3})

.
1

λ

∑
n∈N

ˆ
2Qn

|f |MA(wχQn)

.
1

λ

∑
n∈N

ˆ
2Qn

|f |M loc
A (w)

.
1

λ

ˆ
Rd
|f |M loc

A (w),

(32)

for any Young function A ∈
⋃
p>1Dp. In particular we can take A(t) = ts

′
since we

will not get any better for the other terms.
As for I and II we use the strong type inequalities for p = 1 stated on Remark 3.

In this way we obtain (13).
Now, suppose that the kernel K satisfy conditions (a∞) and (b∞). Let λ > 0,

we use the same decomposition as in (31) to get

w({|Tf > λ}) ≤ I + II + III.

We deal with III in the same way, obtaining

III .
1

λ

ˆ
Rd
|f |M loc

A (w),

for any A ∈
⋃
p>1Dp.

For k ∈ Z we set Qkn = B(xj , γ2kρ(xj)). To estimate the term II by the
Tchebyshev’s inequality we may write

II =
∑
n∈N

w({x ∈ Qn : |T (fχ(2Qn)c)(x)| > λ/3})

≤
∑
n∈N

3

λ

ˆ
Qn

|T (fχ(2Qn)c)|(x)w(x)dx

≤
∑
n∈N

3

λ

ˆ
Qn

(∑
k∈N

ˆ
Qk+1
n \Qkn

|K(x, y)||f(y)|dy

)
w(x)dx.

(33)
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 15

Now, using condition (a∞)

II .
1

λ

∑
n∈N

ˆ
Qn

∑
k∈N

2−kN

(2kρ(xn))d

(ˆ
Qk+1
n

|f(y)|dy
)
w(x)dx

.
1

λ

∑
n∈N

∑
k∈N

2−kN
ˆ
Qk+1
n

|f(y)|
(

1

|Qk+1
n |

ˆ
Qk+1
n

w(x)dx

)
dy

.
1

λ

∑
n∈N

∑
k∈N

2−k(N−θ)
ˆ
Qk+1
n

|f(y)|Mθ(w)dy

.
∑
k∈N

2−k(N−θ)
ˆ
Rd

(∑
n∈N

χQk+1
n

)
|f(y)|Mθ(w)dy

.
ˆ
Rd
|f(y)|Mθ(w)dy,

(34)

choosing N = N1 + θ + 1.
Next, to estimate I we use the Tchebyshev’s inequality and condition (b∞).

I =
∑
j∈N

w({x ∈ Qn : |(T − T0)(fχ2Qn)(x)| > λ/3})

≤
∑
n∈N

3

λ

ˆ
Qn

(ˆ
2Qn

|K(x, y)−K0(x, y)||f(y)|dy
)
w(x)dx

.
1

λ

∑
j∈N

ˆ
Qn

(ˆ
2Qn

|f(y)|
|x− y|d

(
|x− y|
ρ(x)

)2−d/q

dy

)
w(x)dx

.
1

λ

∑
n∈N

ρ(xn)d/q−2
ˆ
2Qn

|f(y)|
ˆ
Qn

|x− y|2−d/q−dw(x)dx dy.

(35)

Now, if y ∈ 2Qn, and calling Byn = B(y, 3γρ(xn)), thenˆ
Qn

|x− y|2−d/q−dw(x)dx

≤
∑
k∈N

ˆ
2−k+1Byn\2−kByn

|x− y|2−d/q−dw(x)dx

≤ ρ(xn)2−d/q
∑
k∈N

2−k(2−d/q)

(2−kρ(xn))d

ˆ
2−k+1Byn

w

≤ ρ(xn)2−d/qM locw(y).

Therefore, we obtain

I .
1

λ

∑
n

ˆ
2Qn

|f |M locw .
1

λ

ˆ
Rd
|f(y)|M locw.(36)

Altogether we obtain inequality (14). The same estimate is obtained for T ? since
conditions (a∞) and (b∞) are symmetric on x and y.

�

Finally, we end this section with the proof of Theorem 5.

IMAL PREPRINT # 2018-0042
                              ISSN 2451-7100 
Publication date: October  26, 2018

Prep
rin

t



16 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Proof of Theorem 5. Let T be a linear operator with associated kernel K satisfy-
ing (cs). First, observe that condition (cs) implies both conditions (as) and (bs)
with K0 = 0. Then, proceeding as in equation (18) we can write

ˆ
|Tf |pw =

∑
n∈N

ˆ
Qn

|T (fχ2Qn) + T (fχ2Qcn)|pw

.
∑
n∈N

ˆ
Qn

|T (fχ2Qn)|pw +
∑
n∈N

ˆ
Qn

|T (fχ2Qcn)|pw

= I + II.

(37)

Then, inequality (11) holds for 1 ≤ p < s following the same lines as in the proof
of Theorem 3 and taking into account Remark 3 for p = 1.

To obtain estimate (15) we proceed as above to get

ˆ
|T ?f |pw ≤

∑
n∈N

ˆ
Qn

|T ?(fχ2Qn)|pw +
∑
n∈N

ˆ
Qn

|T ?(fχ2Qcn)|pw = I? + II?(38)

and we deal with I? and II? as in the proof of Theorem 3.
�

4. Application to Schrödinger operators

In this section we apply our general results to operators associated to the semi-
group generated by the Schrödinger differential operator L = −∆ + V on Rd with
d ≥ 3. We will always suppose that the potential V is a non-negative function,
non-identically zero, satisfying a reverse Hölder condition of order q > d/2. Under
these assumptions the function ρ defined by

(39) ρ(x) = sup

{
r > 0 :

1

rd−2

ˆ
B(x,r)

V ≤ 1

}
, x ∈ Rd

is a critical radius function, that is, property (8) is satisfied for some constants C0

and N0.
It is known that V ∈ RHq, q > 1 implies that V is a doubling measure, i.e. there

exists C1 such that

(40)

ˆ
B(x,2r)

V ≤ C1

ˆ
B(x,r)

V.

In fact, if V ∈ RHq, q > 1, then V belongs to the A∞ class of Muckenhoupt.
The following is an useful inequality for V ∈ RHq with q > d/2 that follows

easily from Lemma 1.2 and Lemma 1.8 in [10].

Lemma 4. Let V ∈ RHq for some q > d/2. Let N1 = log2 C1 + 2 − d, where C1

is the doubling constant of V . Then, for any x0 ∈ Rd, R > 0,

1

Rd−2

ˆ
B(x0,R)

V (y)dy ≤ C
(

1 +
R

ρ(x0)

)N0
(

1 +
ρ(x0)

R

)d/q−2
.
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 17

4.1. Riesz-Schrödinger transforms. We consider the operators R1 = ∇L−1/2
and R2 = ∇2L−1, the Riesz-Schrödinger transforms of order 1 and 2 respectively.
Let K1 and K2 be their associated kernels.

The size condition (as) was shown to hold in [1], for both K1 and K2. To
prove that these kernels satisfy also condition (bs) we will compare them with
the classical Riesz transforms R1 = ∇(−∆)−1/2 and R2 = ∇2(−∆)−1 and their
associated kernels K0,1 and K0,2.

Before proving condition (bs) we state the following lemmas that provide us
estimates for the difference between the kernels associated to the Riesz-Schrödinger
transforms and the classical ones. For the Riesz-Schrödinger transform of order
1 such result was already obtained by Shen. On the other hand, the estimate
corresponding to the second order operator is new and we believe is interesting in
its own right.

Lemma 5. [See [10], inequality (5.9)] Let V ∈ RHq for d/2 < q < d. There exists
C such that

|K1(x, y)−K0,1(x, y)| ≤ C

|x− y|d−1

(
G(x, y) +

1

|x− y|

(
|x− y|
ρ(x)

)2−d/q
)
,

where

(41) G(x, y) =

ˆ
B(x,|x−y|/4)

V (u)

|u− x|d−1
du.

Lemma 6. Let x, y0 ∈ Rd and R > 0 such that R ≤ |y − x0| ≤ ρ(x0). Let
x ∈ B(x0, R/8). Then there exists a constant C such that

|K2(x, y)−K0,2(x, y)| ≤ C|R2(V Γ(y, ·)χB(x0,R/4))(x)|+ C

Rd

(
R

ρ(x0)

)δ
,

with δ = min{1, 2− d/q}.

Proof. Let Γ and Γ0 be the fundamental solution of L and −∆ respectively. As it
was shown in [10], page 540,

(42) Γ(x, y)− Γ0(x, y) = −
ˆ
Rd

Γ0(x, ξ)V (ξ)Γ(y, ξ)dξ.

From this we get the following expression for the difference of the kernels.
(43)

K2(x, y)−K0,2(x, y) = ∇2
1Γ(x, y)−∇2

1Γ0(x, y) = −∇2
1

ˆ
Rd

Γ0(x, ξ)V (ξ)Γ(y, ξ)dξ.

Next, we define the following domains: J1 = B(x0, R/4), J2 = B(y,R/4) and
J3 = (J1 ∪ J2)c. The term corresponding to the integral over J1 is, upon a sign,
the classical second order Riesz transform applied to function in Lq with compact
support, that is

(44) |∇2
1

ˆ
J1

Γ0(x, ξ)V (ξ)Γ(y, ξ)dξ| = |R2(V Γ(y, ·)χB(x0,R/4))(x)|.
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18 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

On J2, since we are away from the singularity of Γ0, we can use the size estimates
for Γ and Γ0 together with Hölder’s inequality to obtain

∣∣∣∣ˆ
J2

∇2
1 Γ0(x, ξ)V (ξ)Γ(y, ξ)dξ

∣∣∣∣∣
≤ C

Rd

ˆ
B(y,R/4)

V (ξ)

|y − ξ|d−2
dξ

≤ C

Rd

(ˆ
B(y,R/4)

V q(ξ)dξ

) 1
q
(ˆ

B(y,R/4)

dξ

|y − ξ|(d−2)q′

) 1
q′

.

(45)

For the first integral we can use the reverse Hölder condition for V together with
Lemma 4, while on the second integral q > d/2 implies that (d− 2)q′ < d. Then

(46)

∣∣∣∣ˆ
J2

∇2
1Γ0(x, ξ)V (ξ)Γ(y, ξ)dξ

∣∣∣∣ . 1

Rd

(
R

ρ(x0)

)2−d/q

,

since y ∈ B(x0, ρ(x0)).
To estimate the integral on J3 we divide in J31 ∪ J32, where J31 = {ξ ∈ Rd :

R/4 ≤ |y − ξ| < 2R ∧ |x0 − ξ| ≥ R/4} and J32 = {ξ ∈ Rd : |y − ξ| ≥ 2R}. On J31
we are away from the singularities of both Γ y Γ0, then

∣∣∣∣ˆ
J31

∇2
1Γ0(x, ξ)V (ξ)Γ(y, ξ)dξ

∣∣∣∣ . ˆ
J31

V (ξ)

|x− ξ|d|y − ξ|d−2
dξ

.
1

R2d−2

ˆ
B(y,2R)

V (ξ)dξ

.
1

Rd

(
R

ρ(x0)

)2−d/q

,

(47)

where we in the last inequality, have used again Lemma 4.
Regarding J32 it is easy to check that |x− ξ| ≥ 3|y − ξ|/8, so

∣∣∣∣ˆ
J32

∇2
1Γ0(x, ξ)V (ξ)Γ(y, ξ)dξ

∣∣∣∣ ≤ CN ˆ
J32

V (ξ)

|x− ξ|d|y − ξ|d−2

(
1 +
|y − ξ|
ρ(y)

)−N
dξ

≤ CN
ˆ
J32

V (ξ)

|y − ξ|2d−2

(
1 +
|y − ξ|
ρ(y)

)−N
dξ.

(48)

Assume firts that 2R < ρ(y). We split the integral in J321 = {ξ ∈ Rd : 2R ≤
|y − ξ| < ρ(y)} and J322 = {ξ ∈ Rd : |y − ξ| ≥ ρ(y)}. For the integral on J321,
let k0 ∈ N such that 2k0−1R ≤ ρ(y) ≤ 2k0R. Then using Lemma 4 and that
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 19

d > 2− d/q,
ˆ
2R≤|y−ξ|<ρ(y)

V (ξ)

|y − ξ|2d−2
dξ ≤

k0∑
k=2

ˆ
2k−1R≤|y−ξ|<2kR

V (ξ)

|y − ξ|2d−2

.
k0∑
k=1

1

(2kR)d
1

(2kR)d−2

ˆ
B(y,2kR)

V (ξ)dξ

.
1

Rd

k0∑
k=1

2−kd
(

2kR

ρ(y)

)2−d/q

.
1

Rd

(
R

ρ(x0)

)2−d/q

,

(49)

since ρ(y) ' ρ(x0).
On J322, let µ = log2 C1, where C1 is the doubling constant of the potential V .

Then we have
ˆ
|x−ξ|≥ρ(y)

V (ξ)

|y − ξ|2d−2

(
ρ(y)

|y − ξ|

)N
dξ

.
∞∑
k=1

1

2kN

ˆ
2k−1ρ(y)|y−ξ|<2k+ρ(y)

V (ξ)

|y − ξ|2d−2

≤
∞∑
k=1

1

2k(2d−2+N)ρ(y)2d−2

ˆ
B(y,2kρ(y))

V (ξ)dξ

.
1

ρ(y)d

∞∑
k=1

1

2k(2d−2+N−µ)ρ(y)d−2

ˆ
B(y,ρ(y))

V (ξ)dξ

.
1

ρ(y)d
≤ 1

Rd

(
R

ρ(x0)

)2−d/q

,

(50)

choosing N big enough and using that ρ(y) ' ρ(x0), R < ρ(x0) and 2− d/q < d.
�

As an applycation of Lemma 6, Theorem 3 and Theorem 4 we obtain the follow-
ing inequalities for R2.

Theorem 6. Let V ∈ RHq for q > d/2, and θ ≥ 0. Then, for any weight w the
following inequalities hold.

(51)

ˆ
|R2f |pw ≤ Cθ

ˆ
|f |pMθ

rw,

for 1 < p < q and r = (q/p)′,

(52)

ˆ
|R?2f |pw ≤ Cθ,A

ˆ
|f |p(M loc

A +Mθ)w,

for q′ < p <∞ and any Young function A ∈ Dp,

(53) w({|R2f | > λ}) ≤ Cθ
λ

ˆ
|f |Mθ

q′w.
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20 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Proof. As we was say before, it only remains to check condition (b′s) for the kernel
K2. Let x0, y ∈ Rd and R > 0 such that R < |y − x0| < 2R and R ≤ ρ(x0). We
are going to check condition (b′s) with s = q using Lemma 6,(ˆ

B(x0,R/2)

|K2(x, y)−K2,0(x, y)|qdx

)1/q

≤

(ˆ
B(x0,R/2)

(
|R2(V Γ(y, ·)χB(x0,R/4))(x)|+ C

Rd

(
R

ρ(x0)

)δ)q
dx

)1/q

.

Dividing the integral in two terms it is straightforward that the second one gives
us the desired estimate. For the first one, recalling that R2 is a bounded operator
on Lq for 1 < q <∞, and applying Lemma 4,(ˆ

B(x0,R/2)

|R2(V Γ(y, ·)χB(x0,R/4))(x)|qdx

)1/q

.

(ˆ
B(x0,R/4)

V q(x)|Γ(y, x)|qdx

)1/q

.
1

Rd−2

(ˆ
B(x0,R/4)

V q

)1/q

. R−d/q
′
(

R

ρ(x0)

)2−d/q

.

(54)

�

For R1 different inequalities hold true depending on q. For q > d, Shen showed
in [10] that R1 and R?1 are Calderón-Zygmund operators. Moreover, their associ-
ated kernels satisfy the stronger size condition ((a∞)) (see inequality (6.5) there).
Later on, condition ((b∞)) was proved for the difference between K1 and K1,0

(see [2] Lemma 3).
Therefore, as an application of Theorem 3, Corollary 1 and Theorem 4 we obtain

the following result.

Theorem 7. Let V ∈ RHq for q > d/2, w ≥ 0, w ∈ L1
loc and θ ≥ 0. Let p0 such

that 1/p0 = (1/q − 1/d)+ Then, for 1 < p < p0 the following inequalities hold.

(55)

ˆ
|R1f |pw ≤ Cθ

ˆ
|f |pMθ

rw,

for 1 < p < p0 and r = (p0/p)
′,

(56)

ˆ
|R?1f |pw ≤ Cθ

ˆ
|f |p(M loc

A w +Mθw),

for p′0 < p <∞ and any Young function A ∈ Dp,

(57) w({|R1f | > λ}) ≤ Cθ
λ

ˆ
|f |Mθ

p′0
w.

Moreover, if q > d, we have

(58)

ˆ
|R1f |pw ≤ Cθ

ˆ
|f |p(M loc

A w +Mθw),
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 21

for 1 < p <∞ and any Young function A ∈ Dp and

(59) w({|R1f | > λ}) ≤ Cθ
λ

ˆ
|f |Mθ

Aw,

(60) w({|R?1f | > λ}) ≤ Cθ
λ

ˆ
|f |Mθ

Aw,

for any Young function A ∈
⋃
p>1Dp.

Proof. Let V ∈ RHq for q > d/2. Suppose first that q < d and let us show that
K1 satisfy conditions (b′s) and (a′s) for s = p0 with 1/p0 = 1/q − 1/d. For (b′s)
let x0 ∈ Rd, 0 < R ≤ ρ(x0) and R < |y − x0| < 2R. First, we make use of
Lemma 5. Due to the boundedness of the classical fractional integral operator I1
and the reverse Hölder property of V we get that, for G defined in (41),

(ˆ
B(x0,R/2)

(
G(x, y)

|x− y|d−1

)p0
dx

)1/p0

≤ C

Rd−1

(ˆ
B(x0,R/2)

(ˆ
B(x0,R)

V (u)

|u− x|
du

)p0
dx

)1/p0

≤ C

Rd−1

(ˆ
Rd
|I1(χB(x0,R)V )|p0

)1/p0

≤ C

Rd−1

(ˆ
B(x0.R)

V q

)1/q

≤ CR
d/q−d

Rd−1

ˆ
B(x0,R)

V

≤ CR−d/p
′
0

(
R

ρ(x0)

)2−d/q

,

(61)

where, in the last inequality, we have used Lemma 4. As for the second term appear-
ing in Lemma 5, the same estimate holds easily. To check the size condition (a′s)
we make use of the following estimate that can be found on page 538 of [10]. For
every N > 0 there exists a constant CN such that

(62) |K1(x, y)| ≤ CN
(

1 +
|x− y|
ρ(x)

)−N
1

|x− y|d−1

(
G(x, y) +

1

|x− y|

)
,

with G as above. This estimate, together with a similar argument as in (61) gives us
(a′s) for s = p0. Therefore, inequalities (55), (56) and (57) follow as an application
of Theorems 3 and 4.

Next, suppose that q > d. In this case, it is known that K1 satisfy the point-
wise estimates (a∞) and (b∞). For the size condition we refer to inequality (6.5)
in [10]. Condition (b∞) was stated and proved in [2], Lemma 3. Thus, applying
now Corollary 1 and Theorem 4 we obtain inequalities (58), (59) and (60).

�

4.2. Operators V γL−γ. We consider, for V ∈ RHq, q > d/2, the family of oper-
ators of type V γL−γ for 0 < γ < d/2. For each γ, we can write Kγ , the kernel of
V γL−γ , as

Kγ(x, y) = V γ(x)Jγ(x, y),
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22 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

where Jγ is the corresponding kernel of the fractional integral operator L−γ . For
Jγ we have the following estimate that can be found in [8], page 587. For each
N > 0 there exists CN such that

(63) |Jγ(x, y)| ≤ 1

|x− y|d−2γ
CN

(
1 +
|x− y|
ρ(x)

)−N
.

We will show next that the size estimate for Jγ gives us condition (cs) for Kγ with
s = q/γ. In fract, let x0, y ∈ Rd and R such that |y − x0| < R/2. Applying
Lemmas 1 and 4 we get

(ˆ
R<|x−x0|<2R

|Kγ(x, y)|q/γdx

)γ/q

≤ CN
Rd−2γ

(
1 +

R

ρ(x0)

)−N/N0
(ˆ

B(x0,2R)

V q

)γ/q

. R−d/(q/γ)
′
(

1 +
R

ρ(x0)

)−N/N0+γN1(
1 +

ρ(x0)

R

)−γ(2−d/q)
.

(64)

The above estimate together with Theorem 5 give us the following result.

Theorem 8. Let V ∈ RHq for q > d/2, 0 < γ < d/2 and θ ≥ 0. Then, for any
weight w,

(65)

ˆ
|V γL−γf |pw ≤ Cθ

ˆ
|f |pMθ

rw,

for 1 ≤ p < q/γ, r = (q/(γp))′ and

(66)

ˆ
|L−γV γf |pw ≤ Cθ

ˆ
|f |pMθw,

for (q/γ)′ < p <∞.

4.3. Operators V γ−1/2∇L−γ. We consider the family of operators V γ−1/2∇L−γ
for 1/2 < γ ≤ 1 that includes the operator L−1∇V 1/2 which appeared first in [10].
In (cita) it was shown that the associated kernel Kγ can be written as the product
Kγ(x, y) = V ν/2(x)Kν(x, y), with Kν a fractional kernel of order ν = 2γ − 1,
satisfying for each N ,

(67) |Kν(x, y)| ≤ CN
|x− y|d−2γ+1

(
1 +
|x− y|
ρ(y)

)−N
,

if V ∈ RHq with q > d and(ˆ
R<|x−y|<2R

|Kν(x, y)|p0dx

)1/p0

≤ CR−d/p
′
0+2γ−1

(
1 +

R

ρ(y)

)−N
,(68)

when d/2 < q < d, with p0 such that 1/p0 = 1/q − 1/d.
We will show now that these estimates imply condition (cs) for s = pγ such that

(69)
1

pγ
=

(
1

q
− 1

d

)+

+
2γ − 1

2q
.
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 23

Let x0, y ∈ Rd and R > 0 such that |y − x0| < R/2. If q > d, and hence
1
pγ

= 2γ−1
2q , we may use estimate (67), condition (7) and Lemma 4 to get

(ˆ
R<|x−x0|<2R

|Kγ(x, y)V γ−1/2(x)|
2q

2γ−1 dx

) 2γ−1
2q

≤ CN
Rd−2γ+1

(ˆ
B(x0,2R)

V q

) 2γ−1
2q (

1 +
R

ρ(x0)

)−N
. R−d/p

′
γ

(
1 +

ρ(x0)

R

)−(γ−1/2)(2−d/q)(
1 +

R

ρ(x0)

)−N+N1(γ−1/2)

.

(70)

If d/2 < q < d, now we have 1
pγ

= 1
p0

+ 2γ−1
2q . Then, by Holder’s inequality

together with (68) and Lemma 4 as above we obtain

(ˆ
R<|x−x0|<2R

|Kγ(x, y)V γ−1/2(x)|pγdx

)1/pγ

≤

(ˆ
R<|x−x0|<2R

|Kγ(x, y)|p0dx

)1/p0 (ˆ
B(x0,2R)

V q

) 2γ−1
2q

. R−d/p
′
γ

(
1 +

ρ(x0)

R

)−(γ−1/2)(2−d/q)(
1 +

R

ρ(x0)

)−N+N1(γ−1/2)

.

(71)

Applying the above estimates and Theorem 5 we obtain the following result.

Theorem 9. Let V ∈ RHq for q > d/2, 1/2 < γ ≤ 1, and θ ≥ 0. Then if pγ is
given by (69), for any weight w we have

(72)

ˆ
|V γ−1/2∇L−γf |pw ≤ Cθ

ˆ
|f |pMθ

rw,

for 1 ≤ p < pγ with r = (pγ/p)
′, and

(73)

ˆ
|L−γ∇V γ−1/2f |pw ≤ Cθ

ˆ
|f |pMθw,

for p′γ < p <∞.

5. On local integrability of Tf and T ?f

In this section we are going to apply the general results of Section 2 to weights
of the form w = χB . Studying maximal operators like Mθ

φ acting on such weights
we are going to get sufficient conditions on f to assume some local integrability of
Tf . We do that in the next lemma.

Lemma 7. Let θ ≥ 0, φ a Young function and Q = B(x0, ρ(x0)) then there exist
positive constants c1, c2, σ1 and σ2 such that

(74) c1

(
1 +
|x− x0|
ρ(x0)

)−σ1

≤Mθ
φχQ(x) ≤ c2

(
1 +
|x− x0|
ρ(x0)

)−σ2
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24 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Proof. Let Q = B(x0, ρ(x0)) be a critical ball, θ ≥ 0 and φ a Young function. We
may suppose without loss of generality that φ(1) = 1. Recalling that

Mθ
φχQ(x) = sup

B(xB ,rB)3x

(
1 +

rB
ρ(xB)

)−θ
‖χQ‖φ,B ,

it is enough to consider B such that Q ∩B 6= ∅, otherwise ‖χQ‖φ,B = 0, since

‖χQ‖φ,B = inf

{
λ :

1

|B|

ˆ
B

φ
(χQ
λ

)
≤ 1

}
= inf

{
λ :

1

|B|

ˆ
B∩Q

φ

(
1

λ

)
≤ 1

}
.

Let us consider first a ball B = B(xB , rB) with rB ≤ ρ(xB), and x ∈ B. Then
for y ∈ B ∩Q,

|x− x0| ≤ |x− y|+ |y − x0| ≤ 2rB + ρ(x0) ≤ 2ρ(xB) + ρ(x0).

Also, since B is sub-critical, Q is critical and B ∩ Q 6= ∅ we have that ρ(xB) '
ρ(y) ' ρ(x0). Then,

(75) |x− x0| ≤ C̃ρ(x0),

for some C̃ > 0. Then if x /∈ Q̃ = B(x0, C̃ρ(x0)) we have

M loc
φ (χQ)(x) = sup

B3x
rB≤ρ(xB)

‖χQ‖φ,B = 0.

If x ∈ Q̃ and B ∩Q 6= ∅,

‖χQ‖φ,B = inf

{
λ :
|B ∩Q|
|B|

φ

(
1

λ

)
≤ 1

}
≤ inf

{
λ : φ

(
1

λ

)
≤ 1

}
= 1/φ−1(1) = 1.

(76)

So, taking the supreme over all balls we have that if x ∈ Q̃,

(77) M loc
φ (χQ)(x) ≤

(
1 +

rB
ρ(xB)

)−σ
,

for any σ > 0.
Next, we consider the operator

Mθ,glob
φ (χQ)(x) = sup

B3x
rB≥ρ(xB)

(
1 +

rB
ρ(xB)

)−θ
‖χQ‖φ,B(78)

As above, it is enough to consider balls B such that Q ∩B 6= ∅. Let y ∈ Q ∩B,
then ρ(y) ' ρ(x0). Using Lemma 1(

1 +
rB

ρ(xB)

)−θ
≤ C

(
1 +

rB
ρ(y)

)−θ/N0

≤ C
(

1 +
rB
ρ(x0)

)−θ/N0

Let x ∈ B. Suppose first that x /∈ 2Q, then

|x− x0| ≤ |x− y|+ |y − x0| ≤ 2rB + ρ(x0) ≤ 2rB + |x− x0|/2
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 25

and hence |x− x0| ≤ 4rB . Therefore,(
1 +

rB
ρ(xB)

)−θ
≤ C

(
1 +
|x− x0|
ρ(x0)

)−θ/N0

.

As before, we have ‖χQ‖φ,B ≤ 1. Then, if x /∈ 2Q

Mθ,glob
φ (χQ)(x) ≤ C

(
1 +
|x− x0|
ρ(x0)

)−σ
,

where σ = θ/N0.
On the other hand, if x ∈ 2Q,

Mθ,glob
φ (χQ)(x) ≤Mφ(χQ)(x) ≤ 1.

Then, since |x− x0|/ρ(x0) ≤ 2

Mθ,glob
φ (χQ)(x) ≤ C

(
1 +
|x− x0|
ρ(x0)

)−σ
.

Using that Mθ
φ ≤ M loc

φ + Mθ,glob and collecting last estimates we obtain the

right hand side of (74). For the boundedness by below, given x we consider Bx =
B(x, |x− x0|+ ρ(x0)). Then x ∈ Bx and ‖χQ‖φ,Bx = 1. Therefore,

Mθ
φ(x) ≥

(
1 +
|x− x0|+ ρ(x0)

ρ(x0)

)−θ
‖χQ‖φ,Bx

≥ 2θ
(

1 +
|x− x0|
ρ(x0)

)−θ
.

�

Remark 4. We observe that in particular Lemma 7 holds for all maximal operators
appearing in Theorem 3, Theorem 4. Hence they satisfy inequality (74) for some
constants c1, c2, σ1 and σ2 when applied to the function χB .

Proposition 2. Let p ≥ 1 and φ a Young function. There exists θ ≥ 0 such that
for any ball Q = B(x0, ρ(x0))

(79)

ˆ
|f |pMθ

φ(χQ) <∞

if and only if there exists σ > 0 such that

(80)

ˆ
|f |p

(1 + |x|)σ
<∞.

Proof. Let p ≥ 1 and φ a Young function. Let Q = B(x0, ρ(x0)) a critical ball. It is
straightforward that there are constants c and c̃ depending on x0 and ρ such that

(81)
c

1 + |x−x0|
ρ(x0)

≤ 1

1 + |x|
≤ c̃

1 + |x−x0|
ρ(x0)

.

Then, the equivalence between conditions (79) and (80) follows from equation (81)
above and Lemma 7.

�
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26 B. BONGIOANNI, E. HARBOURE AND P. QUIJANO

Theorem 10. Let 1 ≤ p <∞ and T an operator such that for some Young function
φ and for all θ there exists a constant C such that

(82)

ˆ
|Tf |pw ≤ C

ˆ
|f |pMθ

φw,

for any weight w. Then, if a function f satisfy (80), Tf ∈ Lploc. In particular Tf
is finite almost everywhere.

Proof. Let 1 ≤ p <∞ and T as stated. Let f be a function satisfying (80) for some
σ > 0. Then, applying Proposition 2, there exists some θ ≥ 0 such that (79) holds
for any critical ball Q.

Let B be a ball in Rd. According to Proposition 1 we can cover B by a finite
number of critical balls B1, . . . BN . Using the hypothesis on the operator for such
θ,

ˆ
B

|Tf |p ≤
N∑
i=1

ˆ
|Tf |pχBi

≤ C
N∑
i=1

ˆ
|f |pMθ

φχBi <∞.

�

For operators that satisfy a weak type inequality for p = 1 we obtain an analogous
result following the same lines as in the proof of Theorem 10.

Theorem 11. Let T be an operator such that for some Young function φ and for
all θ there exists a constant C such that

w({|Tf | > λ}) ≤ C
ˆ
|f |Mθ

φw, for all λ > 0,

for all weight w. Then, if a function f satisfy (80) with p = 1, Tf ∈ L1,∞
loc . In

particular Tf is finite almost everywhere.

The above results can be applied to all operators considered in Section 4 since,
as it was shown there, theorems of Section 2 hold in those cases. In particular
we point out that for R1 and R?1 we can apply Theorem 10, for 1 < p < ∞, and
Theorem 11, if V ∈ RHq with q > d. As for the case d/2 < q < d, the conclusion
holds for 1 < p < p0 and p > p′0 respectively. On the other hand, Theorem 10 and
Theorem 11 can be applied to R2 for 1 < p < q, when q > d/2.

Similarly V L−1, V 1/2L−1 and V 1/2L−1/2 fall under the scope of Theorem 10 for
1 ≤ p < q, 1 ≤ p ≤ p1 and 1 ≤ p < 2q, respectively (see Theorem 8 and Theorem 9).

In [10], Shen obtained Lp-estimates for derivatives of solutions of differential
equations related to Schrödinger operator as a consequence of Lp-continuity of
Riesz-Schrödinger Transforms (see Corollary 0.9 and Corollary 0.10). Here, with
our results, we can give qualitative information on their local integrability.

Corollary 2. Suppose V ∈ RHq for some q > d/2. Assume that −∆u + V u = f
in Rd, with f satisfying (80) for some σ > 0 and some p ≥ 1. Then,

(1) if 1 < p < q, ∇2u ∈ Lploc,
(2) if 1 ≤ p < q, V u ∈ Lploc ,

(3) if 1 ≤ p < p1, V 1/2∇u ∈ Lploc,
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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 27

with p1 such that 1/p1 = (1/q − 1/d)
+

+ 1/2q.

Proof. We just apply Theorem 10 to the operators ∇2L−1, V L−1 and V 1/2∇L−1.
�

Corollary 3. Suppose V ∈ RHq for some q > d/2 and let p′0 < p < p0, with p0
such that 1/p0 = (1/q − 1/d)

+
. Assume that −∆u+ V u = ∇ · F in Rd, for a field

F with |F | satisfying (80) for some σ > 0.

(1) If p′0 < p < p0, then
(2) If p′0 < p < 2q, then V 1/2u ∈ Lploc.

Proof. We will show only item (1). The proof of (2) is similar. Let u = L−1∇Ḟ .
Then ∇u = R1(R?1 · F ). Then in order to get that ∇u ∈ Lploc (due to Theorem 10)
it will be enough to check that the operators Tj = R1 ◦ (R?1)j satisfy inequality
(82). In fact, if p′0 < p < p0, thenˆ

|Tjf |pw .
ˆ
|(R?1)jf |pMθ

rw

.
ˆ
|f |pMθ

νM
θ
rw.

(83)

for any ν > 1. Choosing ν > r, it follows easily Mθ
ν (Mθ

rw) ≤ Mθ
νw, and then (82)

holds.
�
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