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UNIFORM APPROXIMATION OF MUCKENHOUPT WEIGHTS

ON FRACTALS BY SIMPLE FUNCTIONS

MARILINA CARENA AND MARISA TOSCHI

Abstract. Given an Ap-Muckenhoupt weight on a fractal obtained as the

attractor of an iterated function system (IFS), we construct a sequence of
approximating weights, which are simple functions belonging uniformly to the

Ap class on the approximating spaces.

Introduction

Let us start by describing our general framework. Let (X,d) be a compact metric
space with diameter 1, i.e. supx,y∈X d(x, y) = 1. Let µ be a Borel probability on X
such that there exist constants K1, K2 and γ > 0 for which the inequalities

K1r
γ ≤ µ(B(x, r)) ≤K2r

γ

hold for every x ∈ X and r ∈ (0,1]. Sometimes this property is called Ahlfors
condition or is described by saying that (X,d,µ) is an Ahlfors space of dimension γ.
It is easy to see that such space (X,d,µ) is a space of homogeneous type. This means
that there exists a constant A ≥ 1 such that 0 < µ(B(x,2r)) ≤ Aµ(B(x, r)) < ∞ for
every x ∈X and every r > 0.

Let Φ be a finite set of contractive similitudes Φ = {φi ∶ X → X, i = 1,2, . . . ,H}
with the same contraction rate. Precisely, each φi satisfies

d(φi(x), φi(y)) = βd(x, y)

for every x, y ∈X and some constant 0 < β < 1. The set Φ is called iterated function
system (IFS). We shall assume that Φ satisfies the open set condition (OSC). This
means that there exists a non-empty open set U ⊂X such that

H

⋃
i=1

φi(U) ⊆ U,

and φi(U) ∩ φj(U) = ∅ if i ≠ j. When U satisfies these properties we say that U is
a set for the OSC for Φ.

For n ∈ N, set In = {1,2, . . . ,H}n. Given i = (i1, i2, . . . , in) ∈ In, we denote with
φni the composition φin ○φin−1 ○ ⋅ ⋅ ⋅ ○φi2 ○φi1 . Then for any subset E of X we have
φni (E) = (φin ○ φin−1 ○ ⋅ ⋅ ⋅ ○ φi2 ○ φi1) (E). Set Xn

i = φni (X) and Xn = ⋃i∈In Xn
i .

It is well known that the sequences of sets (Xn)n converges is the sense of the
Hausdorff distance to a non-empty compact set X∞, which is called the attractor
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2 M. CARENA AND M. TOSCHI

of the system Φ. This set satisfies

X∞ =
H

⋃
i=1

φi(X∞)

and it is the only set in X satisfying this property. Moreover, since φi(X) ⊆ X
for every i, then X∞ = ⋂∞n=1Xn (see [6] or [4]). So that the system Φ defines or
represents the set X∞.

We shall also assume that Φ satisfies the adjacency property. That means that
there exists a positive constant c such that the inclusion

B(φni (z), r) ∩Xn
j ⊆ B(φnj (z), cr) ∩Xn

j

holds for every n ∈ N, every i, j ∈ In, every r > 0 and every z ∈X.

As a simple example, the system Φ = {x/3, x/3 + 2/3} associated to the middle-
third Cantor set satisfies the adjacency property on X = [0,1]. Also, some of the
classical fractals can be obtained through somehow non-standard IFS’s satisfying
it. For example, for the Sierpinski gasket we can slightly modify the usual IFS
defined on the triangle X with vertices at a = (0,0), b = (1/2,

√
3/2) and c = (1,0).

If ρθ denotes the rotation of θ radians about the origin of R2 in the positive sense,
we have that the IFS given by Φ = {φ1, φ2, φ3}, where

φ1(x, y) =
1

2
(x, y) ,

φ2(x, y) =
1

2
(ρ4π/3(x, y)) + v,

φ3(x, y) =
1

2
(ρ2π/3(x, y)) + v,

with v = ( 3
4
,
√
3
4

), satisfies the adjacency property (see [1]), the OSC and gives rise

to the standard Sierpinski triangle. For the Sierpinski carpet, the same is true with
Φ = {φi ∶ 1 ≤ i ≤ 8} given by

φ1(x, y) =
1

3
(x, y) , φ2(x, y) = T 2

3 ,0
(S2(φ1(x, y))),

φ3(x, y) = T 2
3 ,0

(φ1(x, y)), φ4(x, y) = T0, 23 (S1(φ1(x, y))),
φ5(x, y) = T 2

3 ,
2
3
(S1(φ1(x, y))), φ6(x, y) = T0, 23 (φ1(x, y)),

φ7(x, y) = T 2
3 ,

2
3
(S2(φ1(x, y))), φ8(x, y) = T 2

3 ,
2
3
(φ1(x, y)),

defined on the unit square X of R2 with vertices (0,0), (1,0), (1,1) and (0,1),
where Ta,b(x, y) = (x + a, y + b), S1(x, y) = (x,−y) and S2(x, y) = (−x, y).

Now, we need to define three maximal operators which are related through The-
orem 3 of [1]. We will state and used this theorem to prove one of the two main
result of this work.

The first one is the Hardy-Littlewood centered maximal function in (X,d,µ)
given by

Mh(x) = sup
r>0

1

µ(B(x, r)) ∫B(x,r)
∣h(y)∣dµ(y),

for h ∈ L1
loc(X,µ).

The second one is a discrete version of the Hardy-Littlewood maximal operator
applied to a real function g defined on In. Let us fix x0 ∈ U and for i, j ∈ In define
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UNIFORM APPROXIMATION OF MUCKENHOUPT WEIGHTS ON FRACTALS 3

d̃(i, j) = d(φni (x0),φ
n
j (x0)). For n ∈ N, i ∈ In and r > 0, set B(i, r) to denote the d̃-

ball of radius r in (In, d̃). More precisely, B(i, r) = {j ∈ In ∶ d(φni (x0),φ
n
j (x0)) < r}.

We shall consider the Hardy-Littlewood type maximal function as

Mng(i) = sup
r>0

1

card(B(i, r)) ∑
j∈B(i,r)

∣g(j)∣,

where card(E) denotes de number of elements of the set E. We have to point out

that d̃ and hence the Mn’s depend on x0 ∈ U , but we shall fix it from now on.
The last maximal operator is given by

Mnh(x) = sup
r>0

1

µn(B(x, r)) ∫B(x,r)
∣h(y)∣dµn(y),

for h ∈ L1
loc(Xn, µn) where µn is the natural “uniformly distributed” probability

measure induced by µ on Xn. More precisely,

µn(E) = 1

Hn ∑
j∈In

µ ((φnj )−1(E))

for E a Borel set in Xn. In other words, µn = H−n∑j∈In µnj , with µnj (E) =
µ ((φnj )−1(E)). Notice that M0 = M under the standard assumption X0 = X

and µ0 = µ.
It is well known that the sequence of measures (µn)n converges in the weak

star sense to a Borel probability measure µ∞ supported on the attractor X∞.
This measure is called invariant measure or self-affine measure since is the unique
satisfying

µ∞(A) = 1

H

H

∑
i=1

µ∞(φ−1i (A))

for every Borel set A, and also

∫ ϕ(x)dµ∞(x) = 1

H

H

∑
i=1
∫ ϕ(φi(x))dµ∞(x),

for every continuos function ϕ on X (see [6] or [4]). Moreover, the results in [7]
show that (X∞, d, µ∞) is an Ahlfors space of dimension s = − logβH.

Let us finally introduce a definition that shall be used in Theorem 6. We shall
say that the system Φ has null overlapping if µn(Xn

i ∩Xn
j ) = µ∞(Xn

i ∩Xn
j ) = 0

for every n and every i, j ∈ In, i ≠ j. In other words, Φ has null overlapping if
µn ({z ∶ ∑i∈In XXn

i
(z) > 1}) = µ∞ ({z ∶ ∑i∈In XXn

i
(z) > 1}) = 0.

Remark 1. This property is not strong in the sense that the most of the typical
fractals satisfying it. In particular, the examples given above have null overlap-
ping. This property is equivalent to that the measures µn and µ∞ are uniformly
distributed, in the sense that µ∞(Xn

j ) = µn(Xn
j ) = H−n for every j ∈ In. In fact,

taking A =Xn
j in

µ∞(A) = 1

H

H

∑
i=1

µ∞(φ−1i (A))

we easily obtain that µ∞(Xn
j ) ≥ H−n. On the other hand, if µ∞(Xn

j ) > H−n

for some j ∈ In, from the null overlapping property of the system Φ we obtain
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4 M. CARENA AND M. TOSCHI

µ∞(X∞) > 1. Since µ∞ is a probability measure on X∞, we have that µ∞(Xn
i ) =

H−n, and the same holds for µn.

With the above notation, we are in condition to state the following result proved
in [1].

Theorem 2. There exists a geometric constant C such that the inequality

Mnf (φni (z)) ≤ CMn (M(f ○φn)(z)) (i)
holds for every f ∈ L1(Xn, µn), z ∈ X, i ∈ In and n ∈ N, where M(f ○ φn)(z)
denotes the function g on In defined by g(j) =M(f ○φnj )(z).

Also we shall collect in the next lemma some elementary properties which are
proved in [1] and [3].

Lemma 3. Let (X,d,µ) and Φ as above.

(1) The sequence {(Xn, d, µn) ∶ n ∈ N} is a uniform family of spaces of homo-

geneous type. In other words, there exists a constant Ã such that

0 < µn(B(x,2r)) ≤ Ãµn(B(x, r))
for every r > 0, x ∈Xn and n ∈ N.

(2) For each n ∈ N we consider the set ∆n = {φnj (x0) ∶ j ∈ In}. Then
(a) for every n ∈ N we have that ∆n is a δβn-disperse set, with δ =

dist(x0, ∂U). This means that d(φnj (x0),φ
n
i (x0)) ≥ δβn for every i ≠ j

in In;
(b) {(∆n, d, card) ∶ n ∈ N} is a sequence of spaces of homogeneous type

with a uniform doubling constant A.
(3) If h is an integrable real function on (X,µ) then for each n ∈ N and j ∈ In

the function h ○φnj is integrable on (Xn
j , µ

n
j ) and

∫
X
h ○φnj dµ = ∫

Xn
j

hdµnj .

1. Main results

A weight w is a non-negative function in L1
loc(X,µ). Given 1 < p < ∞, we

shall say that a weight w is an Ap-Muckenhoupt weight on (X,µ) if there exists a
constant C such that the inequality

(∫
B
wdµ)(∫

B
w− 1

p−1 dµ)
p−1

≤ C (µ(B))p

holds for every d-ball B in X. We shall also use the notation w ∈ Ap(X,d,µ), and
we shall say that C is a Muckenhoupt constant for w. It is well known that if
(X,d,µ) is a space of homogeneous type and w ∈ Ap(X,d,µ), then ∥Mf∥Lp(dµ) ≤
Cp∥f∥Lp(dµ). Actually, a weight w is an Ap-Muckenhoupt weight on (X,µ) if and
only if ∥Mf∥Lp(wdµ) ≤ Cp,w∥f∥Lp(wdµ) (see [8]). A classical reference for the theory
of Muckenhoupt weights in the Euclidean space is [5].

We shall use the symbol
∗Ð→ to denote the weak star converge of measures. Also,

we shall use the letter C to denote a generic constant not necessarily the same at
each occurrence. The next statement contains the first of the two main results of
the paper.

Theorem 4. Let νn = ∑i∈In v(i)µni , with µni (E) = µ((φni )−1(E)). Then
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UNIFORM APPROXIMATION OF MUCKENHOUPT WEIGHTS ON FRACTALS 5

(1) if v(i) ∈ Ap(In, d̃, card) uniformly in n, then dνn = wndµ
n, with wn ∈

Ap(Xn, d, µn) uniformly in n;

(2) if also we have that νn
∗Ð→ ν, then dν = wdµ, with w ∈ Ap(X∞, d, µ∞).

Proof. Using Theorem 2, the hypothesis (1) and the Lp boundedness of M on

(X,d,µ) and Mn on (In, d̃, card) we obtain

∫
Xn

∣Mnf ∣p dνn = ∑
i∈In

∫
X

∣Mnf(φni (z))∣
p
v(i)dµ(z)

≤ C ∫
X
∑
i∈In

∣Mn (M(f ○φn)(z)) (i)∣p v(i)dµ(z)

≤ C ∫
X
∑
i∈In

∣M(f ○φni )(z)∣pv(i)dµ(z)

≤ C ∑
i∈In

∫
X

∣(f ○φni )(z)∣p dµ(z)v(i)

= C ∫
Xn

∣f ∣p dνn.

Then, by Theorem 4 in [2] we have that νn is absolutely continuous with respect
to µn, and its Radon-Nikodym derivative is an Ap(Xn, d, µn) weight. Finally, if

νn
∗Ð→ ν, by Theorem 8 in [2] we have that ν is absolutely continuous with respect

to µ∞, and its Radon-Nikodym derivative is an Ap(X∞, d, µ∞) weight. �

In order deal with the second result, we shall state and prove the following
auxiliary result.

Lemma 5. There exist constants c1 and c2 such that

⋃
j∈B(i,r)

Xn
j ⊆ B(φni (x∞), c1r) ⊆ ⋃

j∈B(i,c2r)

B(φnj (x0), βn),

for every n ∈ N, r ≥ δβn, i ∈ In and x∞ ∈X∞. As before, δ = dist(x0, ∂U).

Proof. Let us fix n ∈ N, r ≥ δβn, i ∈ In and x∞ ∈ X∞. Let x = φni (x∞). Fix also
j ∈ B(i, r) and y ∈ Xn

j . Then we have that d(φnj (x0),φ
n
i (x0)) < r and that there

exists y0 ∈X such that y = φnj (y0). Then

d(y, x) ≤ d(φnj (y0),φ
n
j (x0)) + d(φ

n
j (x0),φ

n
i (x0)) + d(φ

n
i (x0), x)

≤ βnd(x0, y0) + r + βn

≤ c1r,

where c1 = 2
δ
+ 1. So that ⋃j∈BX

n
j ⊆ B(x, c1r), which proves the first inclusion.

In order to prove the second one, since diam(Xn
j ) = βn, it is enough estimate the

number of sets Xn
j which intersects to B(x, c1r). In other words, we only have to

prove that if j is such that Xn
j ∩B(x, c1r) ≠ ∅, then j ∈ B(i, c2r) for some c2. In

fact, for a such j, there exists y ∈Xn
j with d(y, x) < c1r. Then

d̃(j, i) = d(φnj (x0),φ
n
i (x0))

≤ d(φnj (x0), y) + d(y, x) + d(x,φ
n
i (x0))

≤ βn + c1r + βn

≤ c2r,

where c2 = 4
δ
+ 1, which completes the proof. �
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6 M. CARENA AND M. TOSCHI

Now, we are in condition to state and prove the second main result of this work.

Theorem 6. Asume that the system Φ has null overlapping. Given w ∈ Ap(X∞, d, µ∞),
for each natural number n let us define a measure νn on X by

νn ∶= ∑
i∈In

v(i)dµni ,

where v(i) ∶= 1
Hnµ∞(Xn

i
) ∫Xn

i
w(y)dµ∞(y) ∶= 1

Hn ⨏Xn
i
w(y)dµ∞(y). Then dνn =

wndµ
n, with wn ∈ Ap(Xn, µn) uniformly in n, and νn

∗Ð→ ν where dν ∶= wdµ∞.
Moreover,

wn(x) = ∑
i∈In

(⨏
Xn

i

w(y)dµ∞(y)) XXn
i
(x),

where XA denotes the indicator function on the set A.

Proof. From (1) in Theorem 4, in order to have dνn = wndµn it is enought to prove

that v(i) ∈ Ap(In, d̃, card) with constant which does not depend on n. Then we
shall fix n, i ∈ In and r > 0. Let B ∶= B(i, r). We have to prove that

⎛
⎝∑j∈B

v(j)
⎞
⎠
⎛
⎝∑j∈B

v(j)
1

1−p
⎞
⎠

p−1

≤ C card(B)p,

for some constant C which does not depend on B or n. Notice that if r < δβn, from
(2a) in Lemma 3 we have that B(i, r) = i and the above inequality trivially holds
with C = 1. Then we shall assume that r ≥ δβn, and we will show that

⎛
⎝∑j∈B

⨏
Xn

j

w(y)dµ∞(y)
⎞
⎠
⎛
⎝∑j∈B

(⨏
Xn

j

w(y)dµ∞(y))
1

1−p ⎞
⎠

p−1

≤ C card(B)p.(1.1)

Let us recall that µ∞(Xn
j ) = H−n for every j ∈ In. Now, with s = − logβH we

obtain µ∞(Xn
i ) = βsn. Notice also that from Hölder inequality we have

µ∞(E)p = (∫
E
w(y)

1
pw(y)−

1
p dµ∞(y))

p

≤ (∫
E
w(y)dµ∞(y))(∫

E
w(y)−

1
p−1 dµ∞(y))

p−1

,

for every µ∞-measurable subset E of X. Taking E =Xn
j we obtain

(⨏
Xn

j

w(y)dµ∞(y))
1

1−p

≤ ⨏
Xn

j

w(y)
1

1−p dµ∞(y).

Replacing in (1.1), from the null overlapping and Lemma 5 we have

(1.1) ≤
⎛
⎝∑j∈B

⨏
Xn

j

w(y)dµ∞(y)
⎞
⎠
⎛
⎝∑j∈B

⨏
Xn

j

w(y)
1

1−p dµ∞(y)
⎞
⎠

p−1

≤ 1

Cpβnsp
⎛
⎝∑j∈B

∫
Xn

j

w(y)dµ∞(y)
⎞
⎠
⎛
⎝∑j∈B

∫
Xn

j

w(y)
1

1−p dµ∞(y)
⎞
⎠

p−1

≤ 1

Cpβnsp
(∫
⋃j∈BX

n
j

w(y)dµ∞(y))(∫
⋃j∈BX

n
j

w(y)
1

1−p dµ∞(y))
p−1

Prep
rin

t
 
IMAL PREPRINT # 2016-0035

                                  ISSN 2451-7100 
Publication date: December 19, 2016



UNIFORM APPROXIMATION OF MUCKENHOUPT WEIGHTS ON FRACTALS 7

≤ 1

Cpβnsp
(∫

B(x,c1r)
w(y)dµ∞(y))(∫

B(x∞,c1r)
w(y)

1
1−p dµ∞(y))

p−1

≤
Cp

Cpβnsp
µ∞(B(x, c1r))p,

where Cp denotes the Muckenhoupt constant for w in (X∞, µ∞) and x = φni (x∞)
for any x∞ ∈ X∞ fixed. Notice that x belongs to X∞, since X∞ = ⋃Hi=1 φi(X∞).
Finally, we use the second inclusion in Lemma 5 to obtain

µ∞(B(x, c1r)) ≤ ∑
i∈B(i,c2r)

µ∞(B(φnj (x0, βn))) ≤ Λβnscard(B),

where in the last inequality we have used that (X∞, d, µ∞) is a normal space of
dimension s and (2b) in Lemma 3.

Hence, we have proved that v(i) ∈ Ap(In, d̃, card) with constant which does not
depend on n and consequently, we have that dνn = wndµn with wn ∈ Ap(Xn, d, µn)
uniformly in n.

Moreover, by definition of νn we have

∫
Xn

f(x)wn(x)dµn(x) = ∑
i∈In

∫
Xn

i

f(x) v(i)dµni (x)

= ∑
i∈In

Hn ∫
Xn

f(x) v(i)XXn
i
(x)dµn(x)

= ∫
Xn

f(x) (Hn ∑
i∈In

v(i)XXn
i
(x)) dµn(x).

Then

wn(x) = ∑
i∈In

(⨏
Xn

i

w(y)dµ∞(y)) XXn
i
(x),

where XA denotes the indicator function of the set A.
Finally, we have to proved the weak star converge. In order to do that, we shall

fix a continuous function ϕ on X. We shall prove that

lim
n→∞

∫
X
ϕ(x)wn(x)dµn = ∫

X
ϕ(x)w(x)dµ∞.

Notice first that

∫
X
ϕ(x)wn(x)dµn = ∫

X
ϕ(x) ∑

i∈In

( 1

µ∞(Xn
i ) ∫X

w(y)XXn
i
(y)dµ∞(y)) XXn

i
(x)dµn(x)

= ∑
i∈In

∫
X
∫
X
ϕ(x)XXn

i
(x) 1

µ∞(Xn
i )
w(y)XXn

i
(y)dµ∞(y)dµn(x)

= ∫
X
∑
i∈In

( 1

µ∞(Xn
i ) ∫X

ϕ(x)XXn
i
(x)dµn(x)) XXn

i
(y)w(y)dµ∞(y)

= ∫
X
gn(y)w(y)dµ∞(y),

where gn(y) ∶= ∑i∈In ( 1
µ∞(Xn

i
) ∫X ϕ(x)XXn

i
(x)dµn(x)) XXn

i
(y). So that we have

to show that

lim
n→∞

∫
X
gn(y)w(y)dµ∞(y) = ∫

X
ϕ(y)w(y)dµ∞(y).
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8 M. CARENA AND M. TOSCHI

From the null overlapping property and the fact that µ∞(Xn
i ) = µn(Xn

i ) = H−n,
for each y ∈X∞ we have

gn(y) =
1

µ∞(Xn
i0
) ∫X

ϕ(x)XXn
i0
(x)dµn(x)

=
µn(Xn

i0
)

µ∞(Xn
i0
) ⨏Xn

i0

ϕ(x)dµn(x)

= ⨏
Xn

i0

ϕ(x)dµn(x),

where i0 depends on y and n. Since X is compact, ϕ is uniformly continuous on
X, so that given ε > 0 there exists δ > 0 such that ∣ϕ(x) − ϕ(y)∣ < ε provided that
d(x, y) < δ. Let N0 be such that βn < δ if n ≥ N0. Hence, since diam(Xn

i0
) = βn, for

every n ≥ N0 we have

∣gn(y) − ϕ(y)∣ = ∣⨏
Xn

i0

[ϕ(x) − ϕ(y)]dµn(x)∣

≤ ⨏
Xn

i0

∣ϕ(x) − ϕ(y)∣dµn(x)

< ε.

So that limn→∞ gn(y) = ϕ(y), and from the Lebesgue dominated convergence the-
orem we obtain

lim
n→∞

∫
X
gn(y)w(y)dµ∞ = ∫

X
ϕ(x)w(y)dµ∞,

and the theorem is proved. �
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