
ISSN 2451-7100

IMAL preprints
http://www.imal.santafe-conicet.gov.ar/publicaciones/preprints/index.php

ALGORITHMS FOR THE IMPLEMENTATION OF ADAPTIVE

ISOGEOMETRIC METHODS USING HIERARCHICAL SPLINES

By

Eduardo M. Garau and Rafael Vázquez

IMAL PREPRINT # 2016-0034

Publication date: July 11, 2016

Editorial: Instituto de Matemática Aplicada del Litoral
IMAL (CCT CONICET Santa Fe – UNL)
http://www.imal.santafe-conicet.gov.ar

Director de Publicaciones: Dr. Rubén Spies
E-mail: rspies@santafe-conicet.gov.ar

mailto:rspies@santafe-conicet.gov.ar

ALGORITHMS FOR THE IMPLEMENTATION OF ADAPTIVE
ISOGEOMETRIC METHODS USING HIERARCHICAL SPLINES

EDUARDO M. GARAU∗ AND RAFAEL VÁZQUEZ†

Abstract. In this article we introduce all the ingredients to develop adaptive isogeometric
methods based on hierarchical splines. In particular, we give precise definitions of local refinement
and coarsening that, unlike previously existing methods, can be understood as the inverse of each
other. We also define simple and intuitive data structures for the implementation of hierarchical
splines, and algorithms for refinement and coarsening that take advantage of local information. We
complete the paper with some simple numerical tests to show the performance of the data structures
and algorithms, that have been implemented in the open-source Octave/Matlab code GeoPDEs.

Key words. Isogeometric analysis, adaptive methods, hierarchical splines, local refinement,
coarsening

AMS subject classifications. 65N30, 65D07, 65N50.

1. Introduction. The use of high order spline spaces for the numerical dis-
cretization of partial differential equations has been increased and spread due to the
emergence of the isogeometric analysis (IGA) techniques [16, 8]. Introduced orig-
inally to enhance the interoperability between computer aided design (CAD) and
finite element softwares, the main idea behind IGA is to use splines or rational splines
(NURBS) functions, which are the standard in CAD, both for geometry representation
and for the computation of the discrete solution to the equation. A state-of-the-art
review on the existing mathematical results can be found in [2].

One of the most active research topics on IGA is the development of adaptive
methods for local refinement and coarsening. These methods require the use of spline
spaces that go beyond the tensor product structure of B-splines [9, 24], and several
alternatives have been already proposed and tested in the IGA community, such as
hierarchical splines, T-splines, LR-splines or PHT-splines. Among them, hierarchical
splines are probably the easiest to define and to implement for their use in IGA [29],
which has favored their application by many different research groups, see for example
[15, 21, 23, 27].

Hierarchical splines are defined with a multilevel structure: first one introduces a
sequence of B-spline spaces of different levels and a sequence of subdomains, which de-
fine the hierarchical mesh, then the set of active functions in each level is decided by a
simple check on their support compared to the subdomains. Despite the relative sim-
plicity of their definition, when facing the implementation of adaptive IGA methods
with hierarchical splines we encountered that the algorithms present in the existing
literature [1, 3, 25, 11] did not satisfy our expectations, in many cases because they
fail to reflect the simplicity of the definition. Entering into the details, the data struc-
tures in [1] constrain to refine on disjoint (closed) hyperrectangular regions, which is
not general enough for adaptive refinement. The algorithms and the data structures
in [3] are probably the clearest ones, but their implementation is restricted to the
case of a uniform knot vector in each level, and they do not use local information for
the update of active functions and elements. Instead, the update of active functions
in [25] is done based on local information, but in our opinion their data structures
are unnecessarily complicated, as they make use both of active vertices and elements,

∗Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Santa Fe, Argentina
†Istituto di Matematica Applicata e Tecnologie Informatiche ‘E. Magenes’ (CNR), Pavia, Italy

1

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

while for the definition only elements are needed. A different way to represent the
subdomains, based on a binary subdivision tree, is given in [11] as a generalization of
the two-dimensional implementation in [18]. Although the use of a binary tree can
be computationally efficient, the relation between the tree and the hierarchical mesh
is hardly intuitive, and in fact the same mesh can be represented with many different
binary trees.

Our first goal in this work is to introduce a new set of data structures and al-
gorithms for a clear and intuitive implementation of adaptive IGA methods with
hierarchical splines, and to demonstrate how they work with the help of the Oc-
tave/Matlab package GeoPDEs [10, 28]. The implementation is based on two data
structures: one for the hierarchical mesh, with the list of active elements on each
level, and one for the hierarchical basis, with the list of active functions. These two
simple structures provide all the necessary information required by the adaptive IGA
methods, and they are valid for standard hierarchical splines [29], for the simplified
hierarchical basis introduced in [6], and also for truncated hierarchical splines [12, 13].

Our second goal is to introduce a rigorous definition of coarsening, and the cor-
responding algorithms. In fact, although all the mentioned works basically agree on
the way to perform refinement, either directly refining marked elements or refining
elements within the support of marked functions, there is no agreement on the way
to perform coarsening. In particular, the coarsening strategies in [3, 25] are very
agressive, in the sense that they allow to reactivate coarse elements that have been
refined several times. Similar to [20] and in part inspired by their work, our definition
of coarsening can be proved to be the inverse of refinement, but with the advantage
that our coarsening algorithms are less restrictive than the ones in [20], and they also
work for high order splines.

The paper is organized as follows. In §2 we introduce some basic definitions and
properties about hierarchical splines, and in §3 we recall how they are used in IGA,
with particular attention to the algorithm of matrix assembly. In §4 we introduce
rigorous definitions of the refinement and coarsening procedures. The data structures
to implement adaptive isogeometric methods based on hierarchical splines are detailed
in §5, and are applied in §6 to explain the refinement and coarsening algorithms. The
implementation of these algorithms in the Octave/Matlab package GeoPDEs is briefly
explained in §7, along with several numerical tests to show its performance.

For clarity and simplicity, throughout the paper we restrict ourselves to the case
of hierarchical B-splines. However, all the algorithms in this paper work analogously
for any kind of hierarchical space that satisfies the conditions in [13], provided that
the structures and functions described in §5 can be defined.

2. The basics about hierarchical splines. We give in this section some basic
definitions about hierarchical splines, defined as in [19, 29]. In the following we will

assume that the spaces are defined on the closed parametric domain Ω̂ = [0, 1]d ⊂ Rd.

2.1. Underlying sequence of tensor product spline spaces. We consider
a given sequence {S`}`∈N0

of tensor product d-variate spline spaces such that

(1) S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ . . . ,

which are determined by their degree and their knot vectors. For ` ∈ N0, the B-spline
basis corresponding to S` is denoted by B` := {βi,` | i = 1, . . . , N`}, where N` is
the dimension of the space S`. Furthermore, we denote by Q` the Cartesian mesh
associated to B`, and we say that Q ∈ Q` is a cell of level `. We note that, as in [26],
we assume that the cells are closed sets.

2

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

B-splines possess several important properties, such as non-negativity, partition of
unity, local linear independence and local support, that make them suitable for design
and analysis, see [8, 9, 24] for details. In this work we will make extensive use of the
two-scale relation with non-negative coefficients, which says that B-splines of level `
can be written as linear combinations of B-splines of level ` + 1 with non-negative
coefficients, that is:

(2) βi,` =

N`+1∑
k=1

ck,`+1(βi,`)βk,`+1, ∀βi,` ∈ B`,

with ck,`+1(βi,`) ≥ 0. We notice that, due to the local linear independence of B-splines,
only a limited number of the coefficients ck,`+1(βi,`) are different from zero. We will
say that βk,`+1 is a child of βi,` if ck,`+1(βi,`) 6= 0, and denote by C(βi,`) ⊂ B`+1

the set of children of βi,`. Reciprocally, we define the parents of a basis function
βk,`+1 ∈ B`+1 as P(βk,`+1) := {βi,` ∈ B` | βk,`+1 ∈ C(βi,`)}. In a similar way, for a
cell Q ∈ Q` we say that Q′ ∈ Q`+1 is a child of Q, or equivalently that Q is a parent
of Q′, if Q′ ⊂ Q.

Due to the nestedness of the tensor product spline spaces (1), one can consider
the inclusion map between two consecutive levels I`+1

` : S` −→ S`+1. Considering
the particular choice of the bases B` and B`+1, this inclusion can be expressed in the
form of a matrix, that we denote by C`+1

` , whose entries are given by the coefficients
of the two-scale relation, that is

(C`+1
`)ki = ck,`+1(βi,`), for i = 1, . . . , N`, k = 1, . . . , N`+1.

For tensor product B-splines, the matrix C`+1
` is computed as the Kronecker tensor

product of the analogous matrices corresponding to the univariate case.
Successively applying the two-scale relation (2), for m ∈ N we obtain the general

version

(3) βi,` =

N`+m∑
k=1

ck,`+m(βi,`)βk,`+m, ∀βi,` ∈ B`,

and the corresponding matrix operator C`+m` = C`+m`+m−1 . . . C
`+2
`+1C

`+1
` , which relates

functions of non-consecutive levels.

2.2. Hierarchical B-splines. For the definition of hierarchical B-splines we
follow [19, 29].

Definition 1. [Hierarchy of subdomains] For n ∈ N, we say that the set Ωn :=
{Ω0,Ω1, . . . ,Ωn} is a hierarchy of subdomains of depth n if

(4) Ω̂ = Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωn−1 ⊃ Ωn = ∅,

and each subdomain Ω` is the union of cells of level `− 1.

Definition 2. [Standard hierarchical basis] Let {S`}`∈N0
be a sequence of spaces

like (1) with the corresponding B-spline bases {B`}`∈N0
, and Ωn := {Ω0,Ω1, . . . ,Ωn}

a hierarchy of subdomains of depth n. We define the hierarchical B-spline basis H ≡
H(Ωn) by taking H := Hn−1 in the following recursive algorithm: H0 := B0,

H`+1 := {β ∈ H` | suppβ 6⊂ Ω`+1} ∪
{β ∈ B`+1 | suppβ ⊂ Ω`+1}, ` = 0, . . . , n− 2.

3

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Fig. 1. Example of biquadratic B-splines of maximum smoothness over a three-level mesh.
Three functions of level 1 are shown by highlighting their supports. One function is active (solid
blue line), one is deactivated (red dashed line), and one is passive (purple dashed-dotted line).

The hierarchical spline basis is associated to an underlying hierarchical mesh Q ≡
Q(Ωn), given by

Q :=
n−1⋃
`=0

{Q ∈ Q` | Q ⊂ Ω` ∧ Q 6⊂ Ω`+1}.

In the following we say that Q is an active cell (or active element) if Q ∈ Q, and it
is an active cell of level ` if Q ∈ Q` ∩Q. We will also say that Q is a deactivated cell
of level ` if Q ∈ Q` and Q ⊂ Ω`+1.

Analogously, we say that β is an active (basis) function if β ∈ H, it is an active
function of level ` if β ∈ FA` := H ∩ B`, and it is a deactivated function of level ` if
β ∈ FD` := H` \ H`+1, i.e., suppβ ⊂ Ω`+1. Moreover, H` ∩ B` is the union of active
and deactivated functions of level `. Note that a function of level ` is active if all the
active cells within its support are of level ` or higher, and at least one of such cells is
actually of level `. A function is deactivated when all the cells of its level within the
support are deactivated. Basis functions of level ` whose support is not contained in
Ω` are neither active nor deactivated, and will be referred to as passive functions. In
Figure 1 we show, in an example of biquadratic hierarchical splines, a basis function
of each type.

It will be helpful, specially to write some equations in matrix form, to give a
notation for the number of these functions. We will denote by N := #H the dimension
of the hierarchical space, and by NA

` := #(H ∩ B`) and ND
` := #(H` \ H`+1) the

number of active and deactivated functions of level `, respectively. Sometimes we will
also make use of NA

0:` =
∑`
k=0N

A
k , the number of active functions up to level `.

Finally, we remark that, unlike in the tensor product case, the basis functions of
the hierarchical space do not form a partition of unity, although the unity belongs to
the space. That is, there exist coefficients aβ such that

(5)
∑
β∈H

aββ(x̂) = 1, for x̂ ∈ Ω̂,

and it can be proved that aβ ≥ 0.

2.3. A simplified hierarchical B-spline space. In [6] the authors introduced
a different hierarchical space, with the same approximation properties as the one in

4

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Fig. 2. Some examples of two-level meshes for bicubic splines of maximum smoothness.
In both cases, the highlighted B-splines of level 1 have support included in Ω1, but they are
not children of any deactivated B-spline of level 0, and thus, they belong to the hierarchical

basis H but not to the simplified basis H̃.

the previous section but with lower dimension. This space is defined in a way that
focus on the relation between functions.

Definition 3. [Simplified hierarchical basis] Let {S`}`∈N0
be a sequence of spaces

like (1) with the corresponding B-spline bases {B`}`∈N0 , and Ωn := {Ω0,Ω1, . . . ,Ωn}
a hierarchy of subdomains of depth n. We define the simplified hierarchical basis
H̃ := H̃n−1 computed with the following recursive algorithm:

H̃0 := B0,

H̃`+1 := {β ∈ H̃` | suppβ 6⊂ Ω`+1} ∪
⋃
β∈H̃`

supp β⊂Ω`+1

C(β), ` = 0, . . . , n− 2.

Unlike in the algorithm of Definition 2, where a basis function of level ` + 1 is
added if its support is contained in Ω`+1, in this simplified space, basis functions of
level `+ 1 are added only if they are children of a deactivated function of level `; see
the examples in Figure 2. This may lead to simpler refinement schemes, specially for
a posteriori estimators which are based on the basis functions and not on the elements
[5].

An interesting property of this basis is that now the coefficients for writing the
unity are strictly positive. That is, we have∑

β∈H̃

aββ(x̂) = 1, for x̂ ∈ Ω̂,

with aβ > 0 (see [6, Theorem 5.1]).
Notice that, given the hierarchy of subdomains Ωn, the underlying hierarchical

mesh is the same for both bases H and H̃. Moreover, the evaluation of the basis
functions will be done exactly in the same way, and from the point of view of the
implementation the only difference is the computation of the set of active functions
during refinement and coarsening. For this reason, in the following we will refer to
both bases with the generic notation H, and only use the notation H̃ when it is
necessary to remark the difference between the two bases.

Remark 4. In many cases the simplified hierarchical basis coincides with the one
obtained by “quasi-hierarchical” refinement in [20] (see also [14]), where refinement
is applied deactivating marked functions and activating their children. However, the

5

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Fig. 3. Two examples for quadratic splines like in [20] that are not allowed with the simplified
hierarchical space. In the example on the left two functions of level 0 are deactivated (dashed
lines), and their children are active, which gives the same mesh as for the B-spline space of level 1.
Deactivating another function of level 0, as in the example on the right, changes the set of active
functions without changing the mesh, and it also adds a linear dependency.

space in [20] is not uniquely determined by the sequence of spaces (1) and the hierarchy
of subdomains (4), like in the two examples of Figure 3: both sets of active functions
can be obtained with their refinement strategy, but the corresponding mesh only has
active elements of level 1, which for the simplified hierarchical basis implies that only
B-splines of level 1 are active. Moreover, for high order splines the refinement in [20]
may lead to linear dependencies, like in the example of Figure 3 (right), where all the
children of the active function of level 0 are also active.

2.4. Truncated hierarchical B-splines. Truncated hierarchical B-splines (or
THB-splines) were introduced and analysed in [12, 13]. THB-splines represent an
alternative basis for the space of hierarchical splines, that recovers the partition of
unity and reduces the support of the basis functions, therefore reducing the inter-
action between them. In particular, this leads to sparser matrices in isogeometric
analysis. Moreover, the better properties of THB-splines with respect to the standard
basis make them more appropriate to develop the mathematical theory of approxi-
mation [26] and adaptivity [7].

The definition of THB-splines requires first the definition of the truncation oper-
ator trunc`+1. This consists in removing in the two-scale relation (2) the contribution
of active and deactivated functions of level `+ 1, that we recall to be the functions in
H`+1 ∩ B`+1. Since trunc`+1 is a linear operator in S`, it is sufficient to define it for
the basis functions:

trunc`+1(βi,`) :=

N`+1∑
k=1

cτk,`+1(βi,`)βk,`+1, for βi,` ∈ B`,

where the coefficients are

cτk,`+1(βi,`) =

{
0 if βk,`+1 ∈ H`+1 ∩ B`+1,
ck,`+1(βi,`) otherwise.

Now, following [12] we define the truncated hierarchical basis T := Tn−1 computed
by the following recursive algorithm: T0 := B0,

T`+1 := {trunc`+1(β) | β ∈ T` ∧ suppβ 6⊂ Ω`+1} ∪
{β ∈ B`+1 | suppβ ⊂ Ω`+1}, ` = 0, . . . , n− 2.

6

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

It is easy to check that spanH = span T , see [12].
Notice that, after truncation, a basis function of level ` is not a function of

B` anymore, and it has to be expressed in terms of the basis B`′ , where `′ > ` is
the level of the finest function that truncates it. Therefore, to evaluate truncated
functions we introduce, analogously to the matrices C`+1

` , the new matrices C`+1,τ
`

that collect the coefficients cτk,`+1(βi,`), which is equivalent to set to zero in C`+1
`

the rows corresponding to active and deactivated functions of level ` + 1. Moreover,
analogously to the matrix C`+m` in §2.1, we define

C`+m,τ` = C`+m,τ`+m−1 . . . C
`+2,τ
`+1 C`+1,τ

` .

Notice also that the restriction of a truncated basis function of level ` to an active
element of the same level remains unaffected. Similarly, the restriction to an active
element of level k ≥ ` is not affected when truncating with functions of level greater
than k, and the truncated function restricted to such element can be computed using
the matrix Ck,τ` , even if it is truncated by finer functions.

Finally, we remark that truncation can be also applied to the hierarchical basis
H̃, setting to zero some rows of the matrix for the two-scale relation in the same way.

3. Isogeometric analysis with hierarchical splines. As already mentioned
in the introduction, isogeometric methods with hierarchical splines have been intro-
duced in [29] and investigated in several works. In this section we address, without
entering into details, some issues to be considered for the implementation.

3.1. The general setting. Recalling that Ω̂ = [0, 1]d, we assume that the do-

main is given by a certain parametrization F : Ω̂ −→ Ω ⊂ Rr, with r ≥ d. Then, we
consider the discrete space

W = span{β ◦ F−1 | β ∈ H} = span{β ◦ F−1 | β ∈ T }.

In general, we want to solve a discrete variational problem: find u ∈ V such that

a(u, v) = 〈f, v〉, ∀v ∈ V,

where a(·, ·) and f are a given bilinear form and a linear operator, respectively, and the
choice of the discrete space V ⊂ W will usually depend on the boundary conditions
of the problem.

As it is standard in isogeometric analysis, one can make use of the isogeometric
paradigm, and consider that the parametrization F is given in terms of hierarchical
splines in H, associating a control point Cβ ∈ Rr to each basis function:

F(x̂) =
∑
β∈H

Cββ(x̂), ∀x̂ ∈ Ω̂.

Actually, most of the times the parametrization F will be expressed in terms of the
tensor product splines of the coarsest level, B0.

3.2. Matrix assembly. One of the main issues when implementing isogeometric
methods with hierarchical splines is the assembly of the matrix, since the integrals
involve active functions of different levels, and possibly acting on active elements from
a third different level. For the assembly we follow the method proposed by [3] and [23],
also used by [15] for THB-splines, which is based on the two-scale relation (3). We

7

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

explain the method for the mass matrix, but the idea applies to any other relevant
matrix, and also to the vector of the right-hand side. For simplicity we write the
computations in the parametric domain Ω̂, but since the two-scale relation is not
affected by the composition with F−1, the method works exactly the same in the
physical domain Ω = F(Ω̂).

Let us first denote the hierarchical basis functions in H by

H = {η1, η2, . . . , ηN}.

Thus, for each m, 1 ≤ m ≤ N , there exist unique integers km and `m such that
ηm = βkm,`m . We will assume that the functions in H are ordered by levels, and
inside each level ` they follow the same ordering as in B`. That is, if m < m′ then
`m ≤ `m′ , and if the two levels are equal then km < km′ .

To compute one entry of the mass matrix M = (Mij)i,j=1,...,N , one must compute
the following integral, which involves only active elements where the functions do not
vanish:

Mij =

∫
Ω̂

ηj ηi =
∑
Q∈Q

∫
Q

ηj ηi =
n−1∑

`=max{`i,`j}

∑
Q`∈Q`∩Q

∫
Q`

ηj ηi.

Recalling that we write ηm = βkm,`m , and denoting by c`km = ck,`(βkm,`m) the coeffi-
cients in (3) to express ηm in terms of basis functions of level `, we can replace in the
integrals each basis function with such expression. Taking the constants out of the
integral and reordering the sums, we obtain

Mij =

n−1∑
`=max{`i,`j}

N∑̀
k=1

N∑̀
k′=1

c`ki

 ∑
Q`∈Q`∩Q

∫
Q`

βk,`βk′,`

 c`k′j .(6)

After the arrangements, we see that it is only needed to compute, in the active el-
ements of level `, the integrals involving the tensor product functions of that level,
independently on whether they are active, deactivated or passive. The computation
of these integrals should be easily available in any IGA software.

The only missing part is the computation of the coefficients in an efficient way,
that can be done rewriting (6) in matrix form. Let us denote by M` the matrix
obtained when computing the integrals for functions of level `, that is,

(M`)kk′ :=
∑

Q`∈Q`∩Q

∫
Q`

βk,`βk′,`,

and let us denote by c`m := (c`1m, c
`
2m, . . . , c

`
N`m

)T the column vector which collects
the coefficients used above. From (6) it follows that

Mij =
n−1∑

`=max{`i,`j}

(c`i)
TM`c

`
j .

To assemble the global matrix, we define the matrix C` := [c`1c
`
2 . . . c

`
NA

0:`
], which

collects the coefficients for basis change from hierarchical basis functions up to level
` to the basis B`. Then, the equation becomes

(7) M =
n−1∑
`=0

[C` 0]T M` [C` 0].

8

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Notice that C` is a rectangular matrix of size N` ×NA
0:`, where we recall that NA

0:` =∑`
k=0N

A
k is the number of active functions up to level `. The same procedure can

be used for the assembly of different matrices and vectors, in the latter the matrix
multiplication is only done on the left.

The computation of the matrices C` can be done through the following recursive
algorithm:

1. C0 = J0,
2. C`+1 = [C`+1

` C`, J`+1], for ` = 0, . . . , n− 2,
where in the first block of the matrix C`+1 we compute, for 0 ≤ k < ` + 1, the
coefficients relative to active functions of level k of the matrices C`+1

k as in (3), and in
the second block, J`+1 denotes the inclusion of active functions of level `+ 1 into the
whole tensor product basis of the same level. Notice that J` is a rectangular matrix
of size N` ×NA

` , and in each column all entries are equal to zero with the exception
of only one which is equal to one.

This approach of assembly works identically for THB-splines, because as already
mentioned in §2.4, the restriction of a truncated function to an active element of
level k is not affected by finer functions. The only difference is that, in the recursive
algortihm, the matrices C`+1

` must be replaced by C`+1,τ
` .

Remark 5. The zero matrices in (7) are added to have all the matrices in the
sum of size N × N . In practice, one can compute CT` M`C` and add the resulting
square matrix, of size NA

0:` ×NA
0:`, into the corresponding entries of M .

Remark 6. For the sake of clarity we have used the whole matrix C`, but for
computational efficiency C` can be restricted to the rows of functions that do not
vanish on active and deactivated elements, reducing memory consumption. Another
possibility, already explained in [3], is to apply the same procedure to elementary
matrices, instead of computing the global matrix M`. The advantage of using the
global matrix is two-fold: first, it avoids to repeat computations, since the coefficients
of the matrix C` are independent of the elements; and second, the use of the global
matrix does not require the connectivity array, that is, the set of active functions in
H that do not vanish on each element. We notice that the connectivity may change
due to truncation.

3.3. Rational hierarchical splines. The hierarchical construction can be gen-
eralized without difficulty to spaces of NURBS, considering that we have a nested
sequence of NURBS spaces associated to the spline spaces {S`}`∈N0

. We recall that
the rational basis functions of level ` are given by

Ri,` =
wi,`βi,`
w

,

where we assume that w ∈ S0, and wi,` is the ith coefficient for writing w as a linear

combination of the B-splines in B`, i.e., w =
∑N`

j=1 wj,`βj,`. Since the weight w does
not change during refinement, we can apply the two-scale relation (2) to obtain a
similar relation between NURBS spaces (see also [15, 23])

Ri,` =
wi,`

∑N`+1

k=1 ck,`+1(βi,`)βk,`+1

w
=

N`+1∑
k=1

ck,`+1(Ri,`)Rk,`+1,

with ck,`+1(Ri,`) = ck,`+1(βi,`)wi,`/wk,`+1. Then, one can apply the algorithm of the
hierarchical construction to the NURBS spaces. For a given sequence of subdomains,

9

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

the indices of the active functions in H do not differ between the rational and non-
rational spaces. For the evaluation of basis functions, one should modify the matrix
C`+1
` to consider the coefficients ck,`+1(Ri,`) instead of ck,`+1(βi,`).

3.4. Multiple patches. Discretizations on multiple patch domains allow to
treat complex geometries that cannot be represented as the image of the unit domain
Ω̂. The physical domain is given as the union of several closed patches, Ω =

⋃
i Ωi,

defined through parametrizations Fi : Ω̂ −→ Ωi. Defining a spline space on each sub-
domain Ωi, and assuming that the knot vectors (the mesh) and the control points (the
parametrization) coincide at the interface, one can construct spaces in the multipatch
domain with global C0 continuity, see [8, Section 3.5] and [2, Section 3.2].

To define hierarchical spaces in multipatch domains we follow [4]. First we define
a globally continuous spline space S0 in the multipatch domain, using tensor product
splines on each patch. Then, applying uniform refinement to all the patches, we define
a multipatch space S` for each level `. Finally, selecting the subdomains Ω` as union
of cells in the multipatch domain, we apply the hierarchical algorithm to this sequence
of spaces, taking into account that functions on the interfaces are supported in more
than one patch. We remark that the two-scale relation remains valid for the spaces
on multipatch domains.

This approach is different from the one in [25], where a hierarchical space is
constructed on each patch, and then the hierarchical spaces must be glued with C0

continuity. The advantage of our approach is that the algorithms in the following
sections work without any modification.

3.5. Boundary spaces. In isogeometric analysis it is common to construct the
tensor product spline spaces {S`}`∈N0

from open knot vectors. In this case it is possible
to define, from the knot vectors and control points corresponding to each boundary
side, the restriction to the boundary of the parametrization F, and also the restriction
to the boundary of the space S` as a (d−1)-dimensional tensor product space (see for
instance [28]). This automatically defines a Cartesian mesh on each boundary side.

The definition of boundary spaces is analogous for hierarchical splines: the re-
striction to the boundary of the hierarchical space spanH is a (d − 1)-dimensional

hierarchical space, and the hierarchical mesh in Ω̂ automatically gives a hierarchical
mesh on each boundary side. Notice that the number of levels of the boundary mesh
and space is always less or equal than the number of levels of H.

4. Refinement and coarsening of hierarchical splines. In order to develop
adaptive methods based on hierarchical splines it is necessary to define suitable re-
finement and coarsening procedures. In this section we introduce such procedures for
hierarchical splines, either marking by elements or by functions. We remark that our
goal is not to introduce or analyse a particular adaptive strategy, but to present rig-
orous and robust procedures that can be used independently of the selected strategy.
Indeed, we show that, unlike in previous works, our refinement and coarsening pro-
cedures are inverse of each other, in the sense that a refinement step can be reverted
with a single coarsening step, and vice versa. The procedures that we introduce de-
fine a new hierarchy of subdomains, hence they work both for the standard and the
simplified hierarchical basis, and they are valid for the truncated basis as well. We
end this section showing how to compute a refinement matrix, to express a field in a
coarse basis in terms of the refinend basis.

4.1. Definition of a refined/coarsened hierarchical mesh and space.
During an adaptive procedure, once a current hierarchical mesh Q and its corre-

10

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

sponding hierarchical space spanH are given, we have to decide how to refine and/or
coarsen the mesh, in order to get the new adapted space. Since the mesh is deter-
mined by the hierarchy of subdomains (4), it is necessary to generate a new sequence
of subdomains.

Definition 7. Let Ωn := {Ω0,Ω1, . . . ,Ωn} and Ω∗n∗ := {Ω∗0,Ω∗1, . . . ,Ω∗n∗} be

hierarchies of subdomains of Ω̂ of depth n and n∗, respectively, where n∗ ≥ n. We say
that Ω∗n∗ is an enlargement of Ωn, or equivalently, that Ωn is a shrinking of Ω∗n∗ , if

Ω` ⊂ Ω∗` , ` = 1, 2, . . . , n.

Let H and Q be a hierarchical B-spline basis and the corresponding hierarchical
mesh, respectively, associated to the hierarchy of subdomains of depth n, Ωn :=
{Ω0,Ω1, . . . ,Ωn}. For Ω∗n∗ an enlargement of Ωn, we denote by H∗ the associated
refined hierarchical basis (see either Definition 2 or Definition 3), and by Q∗ the
corresponding refined hierarchical mesh. It holds that the enlargement of Ωn gives
rise to a new enriched hierarchical space, in the sense that

spanH ⊂ spanH∗.

This result has been proved in [13, Proposition 6] for the standard hierarchical basis,
and in [6, Theorem 5.4] for the simplified hierarchical basis.

4.1.1. Construction of an enlargement of the subdomains for refine-
ment. In order to build an enlargement of the subdomains it is necessary to select
the regions of the domain which require better approximation, following a marking
strategy based, for instance, on some a posteriori error indicators. These regions
are given as a collection of active cells to be refined, Me ⊂ Q, and we denote by
Me

` = Me ∪ Q` the marked cells of level `, for ` = 0, 1, . . . , n − 1. With these se-
lected elements, the enlargement Ω∗n∗ := {Ω∗0,Ω∗1, . . . ,Ω∗n∗} of depth (at most) n + 1
is defined by

(8)

Ω∗0 := Ω0,
Ω∗` := Ω` ∪

{
Q | Q ∈Me

`−1

}
, ` = 1, 2, . . . , n,

Ω∗n+1 := ∅, if Ω∗n 6= ∅,

i.e., Ω∗` is obtained from Ω` by adding the marked cells of level ` − 1. Notice that
Me ⊂ Q \Q∗, i.e., all the marked cells have been refined. We denote this refinement
operation as

(9) Ωn
refine(Me)−−−−−−−→ Ω∗n∗ .

The choice of active cells to be refined can be done either by directly marking
active cells in Q, as it is usually done in adaptive finite elements, or selecting to refine
a set of active basis functions in H, which is equivalent to refining their support [5].
More precisely, we consider the two following ways of refinement:

• Marking active cells: the set of marked active cells Me ⊂ Q is directly
given.
• Marking basis functions: a set of marked active basis functions Mf ⊂ H

is given. Let Mf
` := Mf ∩ B` be the marked functions of level `, for ` =

0, 1, . . . , n− 1. We then define Me :=
⋃n−1
`=0 Me

` , with

(10) Me
` := {Q ∈ Q` ∩Q | ∃β ∈Mf

` such that Q ⊂ suppβ},
11

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Fig. 4. We consider biquadratic B-splines of maximum smoothness and a one-level mesh Q
(i.e. Ω0 = Ω̂ and Ω1 = ∅). The set of marked functionsMf

0 consists of the two highlighted B-splines
of level 0 (left). The refined mesh Q∗ is shown on the right. Notice that the highlighted B-spline of
level 0 is not in H∗, i.e., it was deactivated.

that is, for each marked function we refine the active cells of its level contained
in its support. In this case, as an alternative to (9), we write

Ωn
refine(Mf)−−−−−−−→ Ω∗n∗ .

Once the enlargement Ω∗n∗ has been defined, together with the sequence of spaces
(1), the hierarchical basis H∗ can be determined. Notice that when marking basis
functions it holds Mf ⊂ H \ H∗, i.e., all the marked basis functions have been
deactivated, because their support has been refined. Moreover, it may happen that
a function that has not been marked must be deactivated, because its support is
contained in the union of the supports of other functions, as it happens in Figure 4.

4.1.2. Construction of a shrinking of the subdomains for coarsening.
We introduce here a new methodology to construct the subdomains for coarsening
from a selection of marked cells or marked functions to be reactivated. Compared to
other algorithms existing in the literature, our definition of coarsening is less agressive
than the ones in [25] and [3], because we only allow to reactivate cells such that
their children have not been further refined (see (11)). Instead, in [25] they allow
to reactivate the parent of an active cell without giving any restriction, and in [3]
when marking a function to unrefine all the cells of its level contained in its support
are reactivated, also without restrictions. Being more restrictive permits us to see
coarsening as an inverse of refinement, as we will explain in detail in §4.2. A similar
idea was proposed in [20], but their approach is more restrictive than ours, because
they only allow to reactivate functions such that all their children are active (compare
with (14)).

We start defining, for each level ` = 0, . . . , n − 2, the set of elements admissible
for reactivation as

(11) De` = {Q ∈ Q` | Q ⊂ Ω`+1 ∧ Q ∩ int(Ω`+2) = ∅},

formed by deactivated elements such that none of their children has been deactivated.
To build a shrinking of the subdomains the region to be coarsened is represented by
a subset of these elements Me := ∪n−2

`=0Me
` , where Me

` ⊂ De` . With these selected
elements, we define the shrinking Ω−n− := {Ω−0 ,Ω

−
1 , . . . ,Ω

−
n−} of depth (at most) n,

12

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

by

(12)

Ω−0 := Ω0,
Ω−` := Ω` \ {Q | Q ∈Me

`−1}, ` = 1, 2, . . . , n− 1,
Ω−n := ∅, if Ω−n−1 6= ∅,

i.e., Ω−` is obtained from Ω` by removing the cells selected for unrefinement (to be
reactivated) of level `− 1. Notice that, denoting by Q− the hierarchical mesh corre-
sponding to the subdomains Ω−n− , it holds that Me ⊂ Q− \ Q, i.e., all cells selected
for unrefinement have been reactivated. We denote this coarsening operation as

(13) Ωn
coarsen(Me)−−−−−−−−→ Ω−n− .

Similar to what we have seen for the refinement, the choice of cells to be reacti-
vated for coarsening can be done either by marking elements or by marking functions.
For this reason, we need to define the set of functions admissible for reactivation as

(14) Df` = {β ∈ FD` | ∃Q ∈ De` such that Q ⊂ suppβ},

the set of deactivated functions that have an element in De` within its support. In

particular, any function in Df` has at least one active child, but not all of them are
necessarily active. However, we remark that having an active child is not a sufficient
condition to be in Df` . We then consider the two following ways of coarsening:

• Marking cells to reactivate: a set of deactivated cells Me := ∪n−2
`=0Me

` ,
with Me

` ⊂ De` , must be given.
• Marking functions to reactivate: a set of deactivated functions Mf :=
∪n−2
`=0M

f
` , with Mf

` ⊂ D
f
` , must be given. Using these we define the set of

cells to be reactivated as

Me
` := {Q ∈ De` | ∃β ∈M

f
` such that Q ⊂ suppβ,

and ∀β′ ∈ FD` \M
f
` , Q 6⊂ suppβ′},(15)

that is, we reactivate the cells in the support of functions in Mf whenever
this coarsening does not reactivate functions that are not in Mf . In other
words, functions that have not been marked should remain deactivated. As
we did for refinement, as an alternative to (13) we write

Ωn
coarsen(Mf)−−−−−−−−→ Ω−n− .

Once the shrinking Ω−n− has been defined, the corresponding hierarchical basis H−

can be constructed. When marking basis functions, only functions in Mf
` with a cell

in Me
` within their supports are reactivated, which means that not necessarily all

marked functions are reactivated. For instance, in the example of Figure 4 (right)
marking only the highlighted function to be reactivated would not cause any coars-
ening, because all the cells in its support are contained in the support of at least one
of the two highlighted functions in Figure 4 (left), that have not been marked.

Notice that the list of entities to be reactivated may be built from some a posteriori
error indicators, that usually work on active elements or functions. For instance, when
marking cells one can choose to reactivate a cell in De` if all its children are marked, or
if at least one of them is marked. We do not focus on a particular strategy here, but

13

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

present how to define the shrinking assuming that a list of entities to be reactivated
has been defined. Some examples of how to choose the entities to reactivate are tested
in §7.2.3.

Remark 8. As we said above, the algorithms in [20] are more restrictive than
ours, because they only allow to reactivate functions such that all their children are
active, and analogously, they only allow to refine functions such that all their parents
have been deactivated. Although this restriction is relaxed in the companion paper [14],
the algorithms in those papers do not guarantee the linear independence of the active
functions for high order splines, as already explained in Remark 4. A partial remedy
was introduced in [17], where a check of the support and the number of represented
children is performed during refinement, to avoid linear dependencies. However, the
check they include in the coarsening algorithms is not sufficient, and may still lead to
situations like in the examples of Figure 3.

4.2. Coarsening as the inverse of refinement. The coarsening as we defined
it can be seen as the inverse operation of refinement. When marking cells, it is trivial
to see that if we apply a refinement step with marked cells Me = ∪n−1

`=0Me
` and

then a coarsening step with the same set of cells to be reactivated, we obtain the
original mesh (see Proposition 9 below). When marking basis functions, instead,
after one refinement step we have to mark for reactivation not only the functions
that have been marked for refinement, but all those that have been deactivated (see
Proposition 10 below). For instance, in the example of Figure 4 we marked two
functions for refinement, but to recover the original mesh it is necessary to mark the
three deactivated functions to be reactivated.

Proposition 9. Let Ωn be a hierarchy of subdomains of depth n and Q be the
corresponding hierarchical mesh. Let us define the sequence of refinement and coars-
ening:

Ωn
refine(Me)−−−−−−−→ Ω+

n+

coarsen(Me)−−−−−−−−→ Ω−n− ,

where Me ⊂ Q. Then n− = n, and Ω−` = Ω`, for ` = 0, . . . , n.
Analogously, let us define the sequence of coarsening and refinement:

Ωn
coarsen(Me)−−−−−−−−→ Ω−n−

refine(Me)−−−−−−−→ Ω+
n+ ,

where Me = ∪n−2
`=0Me

` , with Me
` ⊂ De` . Then n+ = n, and Ω+

` = Ω`, for ` = 0, . . . , n.

Proof. The proof is trivial from the definitions in (8) and (12).

Proposition 10. Let Ωn be a hierarchy of subdomains of depth n where Ω` is
the union of supports of B-splines of level `− 1, for ` = 1, . . . , n− 1, and let us define
the sequence of refinement and coarsening marking by functions:

(16) Ωn
refine(Mf)−−−−−−−→ Ω+

n+

coarsen(M̂f)−−−−−−−−→ Ω−n− ,

where Mf :=
⋃n−1
`=0 M

f
` , with Mf

` ⊂ B` ∩ H, and M̂f :=
⋃n−1
`=0 M̂

f
` , where M̂f

` :=
{β ∈ B` ∩ H | suppβ ⊂ ∪β′∈Mf

`
suppβ′} are the functions of level ` deactivated in

the refinement step. Then n− = n, and Ω−` = Ω`, for ` = 0, . . . , n.
Analogously, let the sequence of coarsening and refinement:

(17) Ωn
coarsen(Mf)−−−−−−−−→ Ω−n−

refine(M̌f)−−−−−−−→ Ω+
n+ ,

14

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

where Mf :=
⋃n−2
`=0 M

f
` is a subset of functions admissible for reactivation, and

M̌f :=
⋃n−2
`=0 M̌

f
` , where M̌f

` ⊂ M
f
` is the set of functions of level ` that have been

actually reactivated. Then n+ = n, and Ω+
` = Ω`, for ` = 0, . . . , n.

Proof. We start proving the result for the sequence (16). First, notice that M̂f

is a subset of functions admissible for reactivation as defined in §4.1.2. Let Me :=
∪n−1
`=0Me

` the set of elements to refine obtained from Mf as in (10), and M̂e :=

∪n−1
`=0 M̂e

` the set of elements to reactivate obtained from M̂f (see (15)), i.e.,

M̂e
` := {Q ∈ De,+` | ∃β ∈ M̂f

` s.t. Q ⊂ suppβ, and ∀β′ ∈ FD,+` \ M̂f
` , Q 6⊂ suppβ′}.

(18)

Taking into account Proposition 9, we only need to prove that Me
` = M̂e

` for ` =
0, . . . , n− 1.

Let Q ∈ Me
` . Since Q is a marked active element in the initial mesh Q, we have

that Q is admissible for reactivation in Q+, that is, Q ∈ De,+` . Moreover, there exists

β ∈Mf
` such that Q ⊂ suppβ, and by definition it also holds that β ∈ M̂f

` . Finally,

if β′ ∈ FD,+` \ M̂f
` , then β′ ∈ FD` , that is, β is a deactivated function in the initial

mesh Q, which in turn implies that all elements within its support are deactivated in
Q. Since Q is active in Q, Q 6⊂ suppβ′. Therefore, Q ∈ M̂e

` .

Now let Q ∈ M̂e
` . To prove that Q ∈ Me

` we have to see that Q is active in the

initial mesh Q, and that Q ⊂ suppβ for some β ∈ Mf
` . Let us suppose that Q was

deactivated in Q, that is Q ⊂ Ω`+1. Since Ω`+1 is a union of supports of functions
in B`, there exists β′ ∈ B` such that Q ⊂ suppβ′ ⊂ Ω`+1. Then, β′ ∈ FD` , and

clearly β′ ∈ FD,+` \ M̂f
` , which contradicts (18). Therefore, Q is active in the initial

mesh Q. Moreover, from (18) it follows that Q is deactivated in Q+, which means

that Q ⊂ suppβ for some β ∈ Mf
` . Thus, Q ∈ Me

` . This proves the result for the
sequence (16).

The proof for sequence (17) is similar. We have to prove that Me
` = M̌e

` , for
` = 0, 1, . . . , n − 2, where Me

` are the elements to reactivate obtained from Mf as

in (15), and M̌e
` are the elements to refine in Q− obtained from M̌f

` (see (10)), i.e.,

(19) M̌e
` := {Q ∈ Q` ∩Q− | ∃β ∈ M̌f

` such that Q ⊂ suppβ}.

Let Q ∈ Me
` . From (15) it follows that Q ⊂ suppβ for some β ∈ Mf

` . Since all
elements in Me

` have been reactivated, we have that Q is an active element in Q−,

which in turn implies that β has been actually reactivated, that is, β ∈ M̌f
` . Hence,

taking into account (19), Q ∈ M̌e
` .

Now let Q ∈ M̌e
` , by (19) we have Q ⊂ suppβ for some β ∈ M̌f

` ⊂ M
f
` . Since

β ∈ FD` , Q is a deactivated element in Q. Moreover, Q ∈ De` , because Q is active
in Q−. In addition, taking into account that the nonmarked deactivated functions
remain deactivated, that is, FD` \ M

f
` ⊂ F

D,−
` , we have that Q 6⊂ suppβ′ for any

β′ ∈ FD` \M
f
` . Thus, all the conditions of (15) are satisfied, which implies Q ∈Me

` ,
and the result is proved.

4.3. Refinement matrix between hierarchical bases. When applying a re-
finement step, it may be necessary to express a field computed in the coarse space
in terms of the new basis H∗, for instance to compute the new control points of the
parametrization F, to get the coefficients of the partition of unity, or at every step of

15

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

a time discretization scheme. Due to the nestedness of the spaces this operation can
be done exactly as a matrix vector multiplication, in the form

u∗ = Ku,

where u and u∗ are the vectors collecting the coefficients in terms of the bases H and
H∗, respectively, and each column of the matrix K gives the coefficients to express a
basis function in H in terms of the basis H∗.

As already mentioned in Remark 8, in [20] the authors only allow to refine func-
tions such that all their parents are already deactivated, and therefore each refined
(deactivated) basis function only needs to pass the information to its children, using
the two-scale relation (2). In our case we do not impose that restriction, therefore
a refined function must propagate the information through finer levels until all its
active descendants are reached, using the coefficients in (3). We now explain the com-
putation of the matrix K in this general case through a recursive algorithm, starting
with the case of standard (non truncated) hierarchical splines. We assume that the
ordering of the basis functions is the same as in §3.2.

By the refinement procedure, it always happens that FA` ⊂ (FA∗` ∪FD
∗

`), i.e., any
active function in the coarse basis is either active or deactivated in the fine basis, and
in the latter case the information must be passed to the descendants. Let us define,
similarly to the matrix J` in §3.2, the inclusion matrix of size (NA∗

` +ND∗

`)×NA
` , that

we denote by Ĵ`, to pass from functions in FA` to functions in FA∗` ∪ FD∗` . Starting

from K0 = Ĵ0, the matrix K = Kn∗−1 is computed as the last step in the following:

K`+1 =

[
KA∗

` 0

K`+1
` KD∗

` Ĵ`+1

]
, for ` = 0, . . . , n∗ − 2,

where, in the first row we simply keep active functions, and the matrix KA∗

` is the
restriction of K` to the rows of active functions in H∗ up to level `; and in the second
row we pass the coefficients of deactivated functions to their children: the matrix KD∗

`

is the submatrix of K` restricted to the rows corresponding to deactivated functions
of level ` in H∗, and the matrix K`+1

` is the submatrix of C`+1
` restricted to the rows

of active and deactivated functions of level `+1 in H∗, and the columns of deactivated
functions of level ` in H∗.

The computation of the refinement matrix in the case of THB-splines is slightly
different, for two main reasons. First, a function that remains active may be (fur-
therly) truncated, and part of its information must travel to its (new) truncating
descendants, therefore we cannot use in the second row the restriction to deactivated
functions; second, a function that is refined only needs to pass its information to new
active descendants, since those that were already active collected the information
coming from truncation in previous steps, which is done replacing the matrix C`+1

`

with the matrix C`+1,τ
` introduced in §2.4. Moreover, the computation of the coeffi-

cients for truncation may involve information passing through passive functions (see
Figure 5), therefore we cannot restrict the computations to active and deactivated
functions.

To compute the matrix K for THB-splines, using now the matrices J` as in §3.2,
we start from K0 = J0 and compute the matrices K` similarly to the non-truncated

16

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Fig. 5. A cubic function of level 0, and its active (continuous) and passive (dashed) descendants
of levels 1 and 2. When activating the highlighted function of level 2 (thick red line), the computation
of the refinement matrix in the truncated basis requires passing through one passive function of level 1
(dashed thick red line).

case:

K`+1 =

[
KA∗

` 0

C`+1,τ
` K∗` J`+1

]
, for ` = 0, . . . , n∗ − 2,

where KA∗

` is, as before, the restriction of K` to the rows of active functions up to
level `, and in the second row K∗` is the restriction of K` to rows of functions of level `
(active, deactivated or passive), which removes functions from previous levels, and the

matrix C`+1,τ
` is the one introduced in §2.4 constructed from the truncated hierarchical

basis before refinement. The final step is to remove the non-active functions of the
finest level, thus the refinement matrix is defined as

K = KA∗

n∗−1.

Notice that, similar to Remark 6, the computation of the matrices J` and C`+1,τ
`

can be restricted to the submatrices corresponding to functions acting on active and
deactivated elements, reducing the memory consumption.

Finally, we remark that after a coarsening step, a field in the original space
cannot be represented exactly in the coarse space, and it is required to apply some
approximation methods, such as the least-squares method [3] or a quasi-interpolant
as in [26, 6]. We do not explain the details here, since the computations will depend
on the chosen method.

5. Data structures for the implementation. We introduce in this section
the main data structures and functions that are necessary for the implementation of
adaptive isogeometric methods based on hierarchical splines, and that will be used in
§6 to write the refinement and coarsening algorithms. We introduce two main data

17

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

structures: one for the mesh, with the list of active elements, and one for the discrete
space, with the list of active basis functions. These data structures are similar to those
used in [3] in the case of uniform refinement between levels. As already mentioned in
the introduction, our data structures are simpler and more intuitive than those in [25]
and that the binary subdivision tree used in [11], and are still general enough to cover
not only the different hierarchical bases defined in §2, but in general any hierarchical
basis constructed under the setting in [13].

5.1. Data structures for the tensor product spaces. Our starting point is
the existence of a code capable to perform an isogeometric discretization with a space
of one single level, as those in §2.1. We assume that for any tensor product space, and
therefore for each level `, we have a mesh structure (or class) with the information
of the Cartesian grid Q`, and a space structure (or class) with the information of
the tensor product space S`. To solve a variational IGA problem with tensor product
spaces, these structures are complemented with functions (or methods) to evaluate the
basis functions of B` and their derivatives at the quadrature points, to compute local
elementary matrices, and to assemble the global matrix of the problem. Moreover, we
also need the following functions, that work in the mesh and the space of one single
level:

• get basis functions: for a given cell Q ∈ Q` (or an array of cells), compute
the indices of the basis functions in B` that do not vanish in Q. In IGA
software this is equivalent to the computation of the connectivity, which is
used for assembling the matrix.
• get cells: for a given basis function β ∈ B` (or an array of functions), com-

pute the cells in Q` in which the function does not vanish.
• get neighbors: for a given basis function β ∈ B` (or an array of functions),

compute the indices of basis functions in B` such that their supports share at
least one cell with the support of β. In IGA software, this information is used
for computing the sparsity pattern of the matrix. A possible implementation
of this function is as a composition of the previous two.

Notice that, since all these functions are for tensor product spaces on Cartesian grids,
the computations can be done in the univariate case, and then generalized to the
multivariate case by tensorization1.

5.2. Data structure for the hierarchical mesh. The first structure (or class)
must contain the information for the hierarchical mesh Q. The essential information
that is required to be stored in this structure is the following:

• The current number of levels.
• The Cartesian mesh structure for each level `, with the information for Q`.
• The list of active cells for each level `, that we denote by EA` in the algorithms.
• The list of deactivated cells for each level `, that we denote by ED` in the

algorithms.
• The mesh refinement to pass from level ` to `+ 1 (dyadic, triadic...)

Moreover, we will also need functions to relate the information of two consecutive
levels, that will depend on the choice of the spaces of the sequence (1). Usually this
will be a simple dyadic h-refinement, but our algorithms are general enough to cover
any other refinement, provided that the spline spaces are nested. The two functions
that we will need for the mesh are:

1Octave and Matlab users will find the functions ind2sub, sub2ind and kron extremely useful.

18

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

• get children of cell: for a given cell Q ∈ Q` (or an array of cells), compute
the indices of its children, that is, the cells Q′ ∈ Q`+1 such that Q′ ⊂ Q.
• get parent of cell: for a given cell Q ∈ Q`+1 compute the index of its

parent, that is, the unique cell Q′ ∈ Q` such that Q ⊂ Q′.
Remark 11. The hierarchical mesh can be implemented in a tree structure, that

becomes a simple quadtree or octree for dyadic h-refinement. In this structure the
active elements are the leaves, and the other nodes of the tree are the deactivated
elements. This kind of implementation has been already used in [23], for instance.

5.3. Data structure for the hierarchical space. The second structure (or
class) must contain all the information for the computation of the hierarchical basis.
This is the list of necessary fields in the structure:

• The current number of levels.
• For each level `, a space structure with the information for the tensor product

basis B`.
• The list of active functions FA` for each level `, written FA` in the algorithms.
• The list of deactivated functions FD` for each level `, written FD` in the algo-

rithms.
• The coefficients for the (univariate) two-scale relation between levels ` and
`+ 1.

As for the hierarchical mesh, we need some functions to relate basis functions of two
consecutive levels:

• get children of function: for a given basis function β ∈ B` (or an array
of functions), compute the indices of the children C(β), as defined in §2.1.
Eventually, the function can also compute the coefficients of the two-scale
relation (2). For h-refinement, these coefficients can be computed using the
algorithm in [22].
• get parents of function: for a given basis function β ∈ B`+1, compute the

indices of its parents P(β).
We remark that the necessary fields in the structure are independent of the chosen

basis, but the list of active and deactivated functions for the bases H and H̃ will differ,
and at each refinement/coarsening step will be updated using different algorithms.
The structure is also valid for truncated basis functions. In this case, there is no
difference in the lists of indices of active and deactivated basis functions between the
truncated and the non-truncated basis.

As already explained in §2.4, truncation can be incorporated into the two-scale
relation by setting some rows of the matrix to zero. We note that this has to be done
in the multivariate matrix, computed by Kronecker tensor product of the univariate
ones, that we store in the structure.

Remark 12. Unlike the hierarchical mesh, the hierarchical basis cannot be imple-
mented as a standard tree structure, because a function of level ` + 1 can be a child
of several functions of level `. Moreover, the number of children differs between func-
tions, and an active function would not necessarily be a leave of the tree, because one
of its children could also be active, or even deactivated.

6. Algorithms for refinement and coarsening. We now present the algo-
rithms for the implementation of refinement and coarsening. Similar to the usage of
cell-arrays in Octave/Matlab, in the algorithms we will write {A`}n−1

`=0 for variables
where the size varies from one level to another, and simply A` when one single level is
considered. To alleviate notation, the index interval in the cell-arrays will be specified

19

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

only when it is different from 0 to n − 1, that is, we will usually write {A`}. Also
similar to Octave/Matlab, we will use brackets [A, B] to indicate that a function gives
two (or more) output variables.

Both for refinement and coarsening, we assume that we are given a hierarchical
mesh structure and a hierarchical space structure, that in the algorithms we denote
MESH and SPACE, respectively. These contain the information explained in §5. Apart
from these two structures, we get as an input a set of marked entities for each level,
either cells or basis functions, that we denote by {MARKED`}.

6.1. Refinement algorithms. Algorithm 1 summarizes the main steps to pro-
vide the refined hierarchical mesh and space, that is, the structures for the mesh
Q∗ and the basis H∗. The algorithm is divided in two main parts: in the first part
we compute the cells that have to be deactivated, and refine the hierarchical mesh,
updating the sets of active and deactivated cells of each level; in the second part we
compute the set of functions that have to be deactivated, and refine the hierarchical
space, updating the sets of active and deactivated basis functions of each level. In the
following paragraphs we explain each of these steps in detail.

We note that it would also be possible to refine the mesh and the space at the
same time. However, this approach of separating the mesh and the space can be more
convenient in several situations. For instance, in the mixed formulation for Stokes
problem two discrete spaces, one for the velocity and one for the pressure, have to
be refined simultaneously. In Algorithm 1 this would be simply done applying the
second part of the algorithm to each discrete space.

Algorithm 1 refine: update MESH and SPACE when enlarging the current subdo-
mains with the marked entities (either active cells or active basis functions) given
in {MARKED`}

Input: MESH, SPACE, {MARKED`}
1: if (Marking cells) then
2: {ME`} ← {MARKED`}
3: else if (Marking functions) then
4: {ME`} ← compute cells to refine (MESH, SPACE, {MARKED`})
5: end if
6: [MESH, {NE`}n`=0]← refine hierarchical mesh (MESH, {ME`})

7: if (Marking cells) then
8: {MF`} ← functions to deactivate from cells (MESH, SPACE, {MARKED`})
9: else if (Marking functions) then

10: {MF`} ← functions to deactivate from neighbors (MESH, SPACE, {MARKED`})
11: end if
12: SPACE← refine hierarchical space (MESH, SPACE, {MF`}, {NE`}n`=0)

Output: MESH, SPACE

Refinement of the hierarchical mesh. We first compute the set of cells to be deac-
tivated, that we denote by {ME`}. In the case of marking cells nothing has to be done,
since the marked cells and the ones to be deactivated coincide. In the case of marking
basis functions, for each level we consider the marked basis functions, and collect the
active cells of that level within their supports. This is done in Algorithm 2.

Once we have the set of cells to be deactivated, the refinement of the mesh de-
scribed in Algorithm 3 is quite standard. First we check whether it is necessary to

20

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Algorithm 2 compute cells to refine

Input: MESH, SPACE, {MARKED`}
1: for ` = 0, . . . , n− 1 do
2: ME` ← get cells (MARKED`)
3: ME` ← ME` ∩EA`
4: end for

Output: {ME`}

add a new level. Then, for each level, we remove marked cells from the list of active
cells and add them to the list of deactivated cells, and add their children to the list
of active cells of the next level. The algorithm gives as the output the new refined
mesh, and also the list of cells that have been activated, that will be used to update
the hierarchical basis.

Algorithm 3 refine hierarchical mesh

Input: MESH, {ME`}
1: if MEn−1 6= ∅ then
2: MESH← add empty level
3: end if
4: NE0 ← ∅
5: for ` = 0, . . . , n− 1 do
6: EA` ← EA` \ ME`
7: ED` ← ED` ∪ ME`
8: NE`+1 ← get children of cell (ME`)
9: EA`+1 ← EA`+1 ∪ NE`+1

10: end for
Output: MESH, {NE`}n`=0

Refinement of the space. Once the mesh information has been updated, we start
with the refinement of the discrete space. Although it is possible to compute the set
of active functions directly from the refined mesh, as is done in [3], our algorithms
make use of local information to update this set from the refined cells. As we did for
the mesh, the first step is to collect the basis functions that have to be deactivated,
that is, those functions whose support has no active cell of their same level in the
refined mesh. In the case of marking cells, this is done in Algorithm 4: for each level,
we first collect the active functions that do not vanish in the marked cells, and then,
for each of these functions, we keep as non-marked functions those that have at least
one active cell within their support.

In the case of marking basis functions, it may happen that more functions than
those marked have to be deactivated, as in the example of Figure 4. This set is com-
puted in Algorithm 5: for each level we first collect, using the function get neighbors,
the set of active functions such that their support shares at least one cell with the one
of a marked function. Then, as it is done when marking cells, we keep as non-marked
the functions that have at least one active cell within their support. This check can
be done only for functions that were not already given as marked in the input, to save
computational time.

After selecting the functions that have to be deactivated, we can refine the hier-
archical space, that is, we update the sets of active and deactivated basis functions for

21

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Algorithm 4 functions to deactivate from cells

Input: MESH, SPACE, {MARKED`}
1: for ` = 0, . . . , n− 1 do
2: MF` ← get basis functions (MARKED`)
3: MF` ← MF` ∩FA`
4: for all β ∈ MF` do
5: if (get cells (β) ∩ EA` 6= ∅) then
6: MF` ← MF` \β
7: end if
8: end for
9: end for

Output: {MF`}

Algorithm 5 functions to deactivate from neighbors

Input: MESH, SPACE, {MARKED`}
1: for ` = 0, . . . , n− 1 do
2: MF` ← get neighbors (MARKED`)
3: MF` ← (MF` ∩FA`) \ MARKED` . Check only the support of non-marked functions.
4: for all β ∈ MF` do
5: if (get cells (β) ∩ EA` 6= ∅) then
6: MF` ← MF` \β
7: end if
8: end for
9: MF` ← MF` ∪ MARKED`

10: end for
Output: {MF`}

each level. The procedure is different depending on whether we work with the stan-
dard hierarchical space, or with the simplified hierarchical space, hence we explain
them separately.

For the standard hierarchical space we use Algorithm 6. We start checking if we
are refining elements of the finest level, to add an empty level to the space. Then
for each level ` we remove the functions that have to be deactivated from the list of
active functions, and add them to the list of deactivated ones. Next, for level `+ 1 we
collect the non-active functions such that their support intersects the new cells, which
are candidate functions to be activated. In lines 9–14 we remove from this list those
functions that are not completely supported in Ω∗`+1, that is, the functions containing
a cell of level ` + 1 that is nor active nor deactivated. We finally add in line 15 the
remaining candidate functions to the list of active functions of level `+ 1.

For the simplified hierarchical space we use Algorithm 7. The beginning of the
algorithm is the same as for the standard space: we add an empty level if necessary,
and for each level we remove the functions that have to be deactivated from the list
of active and add them to the list of deactivated. The functions of the next level to
be activated are the children of the marked functions that are not already active or
deactivated. Lines 10–14 take into account a particular situation that may occur for
the simplified space: it may happen that the support of a function that had never
been activated has been already refined, as exemplified in Figure 6. In this case, this
function is automatically marked to be deactivated.

22

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Algorithm 6 refine hierarchical space: standard hierarchical space

Input: MESH, SPACE, {MF`}, {NE`}n`=0

1: if (number of levels of MESH) > (number of levels of SPACE) then
2: SPACE← add empty level
3: end if
4: for ` = 0, . . . , n− 1 do
5: FA` ← FA` \ MF`
6: FD` ← FD` ∪ MF`
7: FC ← get basis functions (NE`+1)
8: FC ← FC \ FA`+1

9: for all β ∈ FC do
10: Qβ ← get cells (β)
11: if (any (Qβ 6∈ EA`+1 ∪ ED`+1)) then
12: FC ← FC \ β
13: end if
14: end for
15: FA`+1 ← FA`+1 ∪ FC
16: end for

Output: SPACE . The refined space

Fig. 6. Example of a particular situation for the simplified hierarchical basis with biquadratic
B-splines of maximum smoothness. In the mesh Q on the left the highlighted function of level 0
(solid blue line) is active, and the highlighted function of level 1 (dashed red line) has never been
activated, because it is not a child of any function completely supported in Ω1. After marking the
highlighted function of level 0 (solid blue line) to obtain the mesh Q∗ on the right, the level 1 function
has to be immediately deactivated, because its support is contained in Ω∗2.

Remark 13. The refinement for the standard hierarchical space in Algorithm 6
can be improved by adding, between lines 6 and 7, the lines 7–9 of Algorithm 7 to
activate the children of marked functions. This reduces the list of candidate functions
for which one should check the support, and it is the way we implemented it in §7.1
(see also [3, Algorithm 2]). Notice that the check of lines 10–14 in Algorithm 7 is not
necessary in this case.

It is also worth to note that the refinement described in Algorithm 1 can be
used to construct the hierarchical basis H for a given hierarchical mesh, provided
that we are given the list of active cells for each level. The procedure is described
in Algorithm 8. One starts from a Cartesian grid and the basis of a tensor product

23

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Algorithm 7 refine hierarchical space: simplified hierarchical space

Input: MESH, SPACE, {MF`}
1: if (number of levels of MESH) > (number of levels of SPACE) then
2: SPACE← add empty level
3: end if
4: for ` = 0, . . . , n− 1 do
5: FA` ← FA` \ MF`
6: FD` ← FD` ∪ MF`
7: FC ← get children of function (MF`)
8: FC ← FC \ (FA`+1 ∪ FD`+1)
9: FA`+1 ← FA`+1 ∪ FC

10: for all β ∈ FC do . Mark new functions whose support is already refined
11: if (get cells (β) ∩ EA`+1 = ∅) then
12: MF`+1 ← MF`+1 ∪β
13: end if
14: end for
15: end for

Output: SPACE . The refined space

space, and then proceeds level by level marking the active cells of the finest level that
are not in the list of active cells given as an input, and therefore have to be refined.
Obviously, the algorithm can be improved replacing the call to refine by a specialized
function, that takes into account that at each step only elements of the finest level
have been marked.

Algorithm 8 build hierarchical space

Input: {ÊA`}
1: MESH←mesh cartesian . Initialize as a Cartesian grid of level 0
2: SPACE← spline space . Initialize as a tensor product space of level 0
3: for k = 0, . . . , n− 2 do
4: {MARKED`}k−1

`=0 ← ∅
5: MARKEDk ← EAk \ ÊAk
6: [MESH, SPACE]← refine (MESH, SPACE, {MARKED}k`=0)
7: end for

Output: MESH, SPACE

6.2. Coarsening algorithms. We recall that for coarsening the set MARKED`
represents the list of entities of level ` that we want to reactivate, which are either
deactivated cells whose children are all active (see (11)), or deactivated basis functions
that have within their support at least one of such deactivated cells (see (14)). Using
this set of candidates to reactivate, Algorithm 9 summarizes the main steps to provide
the coarsened hierarchical mesh and space, that is, the structures for the mesh Q− and
the basis H−, respectively. The algorithm is divided in two main parts: in the first
part we compute the cells that have to be reactivated, and coarsen the hierarchical
mesh, updating the sets of active and deactivated cells of each level; in the second
part, we compute the set of functions that have to be reactivated, and coarsen the
hierarchical space updating the active and deactivated basis functions. In the following
paragraphs we explain each of these steps in detail.

24

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Algorithm 9 coarsen: update MESH and SPACE when shrinking the current subdo-
mains using the candidates to reactivate (either cells or functions) given in {MARKED`}

Input: MESH, SPACE, {MARKED`}
1: if (Marking cells) then
2: {ME`} ← {MARKED`}
3: else if (Marking functions) then
4: {ME`} ← compute cells to reactivate (MESH, SPACE, {MARKED`})
5: end if
6: [MESH, {EtD`}]← coarsen hierarchical mesh (MESH, {ME`})
7: {MF`} ← functions to reactivate from cells (MESH, SPACE, {ME`})
8: SPACE← coarsen hierarchical space (MESH, SPACE, {MF`}, {EtD`})

Output: MESH, SPACE

Coarsening of the hierarchical mesh. First of all, we have to compute the cells
that will be indeed reactivated, that we denote by {ME`}. In the case of marking
cells this set is equal to {MARKED`}, since all the marked cells are admissible to be
reactivated. In the case of marking functions we compute the cells to be reactivated
in Algorithm 10, according to the selection criteria in (15): a cell Q of level ` to be
reactivated must have all its children active, it must be in the support of a marked
function, and it cannot be in the support of a deactivated function of the same level
that has not been marked.

Algorithm 10 compute cells to reactivate

Input: MESH, SPACE, {MARKED`}
1: for ` = 0, . . . , n− 2 do
2: ME` ← ∅
3: I` ← get cells (MARKED`)
4: for Q ∈ I` do
5: if (get children of cell(Q) ∩ ED`+1 = ∅) then
6: if (get basis functions(Q) ∩ (FD` \ MARKED`) = ∅) then
7: ME` ← ME` ∪ Q
8: end if
9: end if

10: end for
11: end for
12: MEn−1 ← ∅

Output: {ME`}

Once we have the set of cells to be reactivated, we can perform the coarsening of
the mesh as described in Algorithm 11. We start by computing the children of the
cells that will be reactivated, that are active cells that have to be deleted from the list
of active cells, and are collected in {EtD`}. We then remove the cells to be reactivated
from the list of deactivated cells and add them to the list of active cells. Finally, if
the finest level remains empty, that is, it does not contain any active element, it is
removed.

Coarsening of the space. Once the mesh information has been updated, we pro-
ceed with the coarsening of the discrete space. We start with the computation, in
Algorithm 12, of the functions that indeed will be reactivated. For the standard hi-

25

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Algorithm 11 coarsen hierarchical mesh

Input: MESH, {ME`}
1: for ` = n− 2, . . . , 0 do
2: EtD`+1 ← get children of cell(ME`)
3: EA`+1 ← EA`+1 \ EtD`+1

4: ED` ← ED` \ ME`
5: EA` ← EA` ∪ ME`
6: end for
7: EtD0 ← ∅
8: if EAn−1 = ∅ then
9: MESH← remove empty level

10: end if
Output: MESH, {EtD`}

erarchical space this is given by the deactivated functions that do not vanish in some
reactivated cell. For the simplified hierarchical space we must also include, in the list
of functions to be reactivated, deactivated functions such that after coarsening none
of their parents will be deactivated, such as the one in Figure 6. Notice that the
computation in Algorithm 12 is also needed when marking basis functions, because
as we have seen in §4.1.2 it may happen that some marked functions are not reacti-
vated. However, in this case the algorithm can be improved computing in line 3 the
intersection only with marked functions, that should be given as an input.

Algorithm 12 functions to reactivate from cells

Input: MESH, SPACE, {ME`}
1: {MF`} ← ∅
2: for ` = 0, . . . , n− 2 do
3: MF` ← MF` ∪(get basis functions (ME`) ∩ FD`)
4: if (Simplified hierarchical space) then
5: CD ← get children of function(MF`) ∩ FD`+1

6: for β ∈ CD do
7: if (get parents of function(β) ∩ (FD` \ MF`) = ∅) then
8: MF`+1 ← MF`+1 ∪β
9: end if

10: end for
11: end if
12: end for

Output: {MF`}

After selecting the functions that have to be reactivated, we coarsen the hierar-
chical space, that is, we update the sets of active and deactivated basis functions for
each level. This is done in Algorithm 13 for the standard hierarchical space, and in
Algorithm 14 for the simplified hierarchical space. The difference between both is how
to decide the active functions to be removed: for the standard space active functions
with one removed element of the same level in their supports have to be removed, as is
done in line 2 of Algorithm 13; for the simplified space the functions to be removed are
the children of reactivated functions such that they are not children of any function
that remains deactivated. This check is performed in lines 4-7 of Algorithm 14.

26

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Algorithm 13 coarsen hierarchical space: standard hierarchical space

Input: MESH, SPACE, {MF`}, {EtD`}
1: for ` = n− 2, . . . , 0 do
2: FA`+1 ← FA`+1 \ get basis functions (EtD`+1)
3: FA` ← FA` ∪ MF`
4: FD` ← FD` \ MF`
5: end for
6: if (number of levels of MESH) < (number of levels of SPACE) then
7: SPACE← remove empty level
8: end if

Output: SPACE . The coarsened space

Algorithm 14 coarsen hierarchical space: simplified hierarchical space

Input: MESH, SPACE, {MF`}
1: for ` = n− 2, . . . , 0 do
2: FA` ← FA` ∪ MF`
3: FD` ← FD` \ MF`
4: FC ← get children of function(MF`)
5: FN ← get neighbors(MF`)
6: FC ← FC \ get children of function(FD` ∩ FN)
7: FA`+1 ← FA`+1 \ FC
8: end for
9: if (number of levels of MESH) < (number of levels of SPACE) then

10: SPACE← remove empty level
11: end if

Output: SPACE . The coarsened space

7. Implementation and numerical tests. We now present a brief description
of the implementation of the adaptive isogeometric methods based on hierarchical
splines in an Octave/Matlab code, along with some numerical results to show the
effectiveness of the method.

7.1. Implementation of hierarchical splines in GeoPDEs. All the algo-
rithms introduced above, and some other functions required by adaptive isogeometric
methods, have been implemented in the free Octave/Matlab package GeoPDEs [10,
28], and will be soon released under a GNU/GPL license in the GeoPDEs webpage2.
The GeoPDEs software is based on two main classes: one for the mesh (msh cartesian
or msh multipatch), and one for the discrete space (sp scalar or sp multipatch). These
classes contain, for the tensor product spaces of each level, the methods and the in-
formation explained in §5.1, see [28] for the details.

For the implementation of hierarchical splines in GeoPDEs we have created two
new classes: hierarchical mesh and hierarchical space, both of them with a multi-
patch counterpart (named with the mp extension). These two classes contain all the
information already introduced in §5, plus some other functionality useful for differ-
ent purposes. For the convenience of potential users, we include in Appendix A four
tables listing the properties and methods of the two classes.

All the algorithms presented in this paper have been implemented in the methods

2https://rafavzqz.github.io/geopdes/

27

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

of the aforementioned classes. For instance, the refinement and coarsening algo-
rithms from §6 are performed with the methods hmsh refine and hspace refine,
and hmsh coarsen and hspace coarsen; and the assembly of the matrix presented
in §3.2 is done with the method op u v hier (and analogous), while the method
hspace subdivision matrix computes the matrices C`, that are stored in the prop-
erty Csub for convenience. Moreover, the classes contain other methods for postpro-
cessing, that allow to plot the mesh, export the discrete solution to a vtk file, or to
compute the discrete error when the exact solution is known.

7.2. Numerical tests. The implementation of our algorithms has been tested
with several numerical examples, that we now explain in detail. Although the algo-
rithms and the implementation are dimension independent, we have preferred to focus
on two-dimensional problems, because their visualization is more intuitive.

7.2.1. Memory consumption of hierarchical splines and THB-splines.
As a first test we compare the performance of hierarchical splines and THB-splines
in terms of memory consumption, running in our implementation the same tests
presented in [11] for the C++ G+SMO library. We consider the unit square domain
refined near the diagonal, and generate four different sequences of meshes that differ
on the mesh grading, as shown in Figure 7. For each grading we refine up to the
tenth level, and generate the hierarchical mesh and the hierarchical space objects of
degrees from 2 to 5, with maximum continuity. This includes the computation of the
matrices C` of §3.2, and of the refinement matrix K of §4.3 each time we add a new
level.

Fig. 7. Four different hierarchical mesh configurations for the diagonal refinement of the unit
square with increasing distance between cells of different levels (a–d). These configurations are the
same from [11, Fig. 6].

The memory consumption is computed as the maximum amount of memory used
by Octave, and obtained with the getrusage built-in function. The results are shown
in Figure 8. We observe that the memory usage grows linearly both for hierarchical
splines and THB-splines, independently of the degree and the mesh grading. This is in
contrast with the results for G+SMO in [11], where the linear growth for THB-splines
is only attained for highly graded meshes. This difference is due to the way we compute
and store the coefficients for truncation. As explained in §2.4, a function of level `
truncated by a finer function of level k ≥ ` is represented as a linear combination of
functions of level k, but its restriction to an element of level k′, with ` ≤ k′ < k, can be
expressed using only functions of level k′. In our implementation we take advantage
of this fact and, as mentioned in Remark 6, we only compute the rows of the matrix
Ck′ related to functions on active and deactivated elements of level k′. Instead, in [11]
the function is always evaluated from the coefficients of functions of level k, which
increases the memory consumption. Notice also that this behavior gets worse when
increasing the degree or the dimension. Moreover, in our case THB-splines consume

28

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

2 2.5 3 3.5 4 4.5 5 5.5

5

5.5

6

6.5

degree = 2

log(DOFs)

lo
g

(M
e

m
o

ry
)

1

1

2 2.5 3 3.5 4 4.5 5 5.5

5

5.5

6

6.5

degree = 3

log(DOFs)

lo
g

(M
e

m
o

ry
)

1

1

2 2.5 3 3.5 4 4.5 5 5.5

5

5.5

6

6.5

degree = 4

log(DOFs)

lo
g

(M
e

m
o

ry
)

1

1

2 2.5 3 3.5 4 4.5 5 5.5

5

5.5

6

6.5

degree = 5

log(DOFs)

lo
g

(M
e

m
o

ry
)

1

1

Fig. 8. Experimental results for hierarchical splines (solid lines) and THB-splines (dashed
lines) for the four hierarchical mesh configurations shown in Figure 7. The brown, red, green and
blue colors (square, circle, diamond and plus markers) correspond to the meshes (a–d), respectively.

less memory than hierarchical splines, due to the lower number of nonzero entries in
these matrices.

It is also worth to note that the consumed memory is higher, in terms of degrees
of freedom, for the less graded meshes, which suggests that the amount of memory
used depends more on the number of levels than on the number of degrees of freedom.
Finally, we remark that for coarse meshes the amount of memory used is dominated
by the required memory to simply run Octave3.

7.2.2. Refinement in a curved L-shaped domain. In order to illustrate the
performance of our local refinement tools, we apply an adaptive isogeometric method
based on hierarchical splines to solve the problem

(20)

{
−∆u = f in Ω

u = g on ∂Ω

where f and g are chosen such that the exact solution u is given in polar coordinates
by u(ρ, ϕ) = ρ2/3 sin(2ϕ/3), and Ω is the curved L-shaped domain shown in Figure 9.
For the solution of the problem we apply a standard adaptive loop of the form

SOLVE −→ ESTIMATE −→ MARK −→ REFINE,

considering two different a posteriori error estimators. We now briefly explain each
step of the adaptive loop.

In the module SOLVE we apply the setting explained in §3.1 to our particular
problem. Let Q and H denote the current hierarchical mesh and basis, respectively,

3This could be avoided computing the memory used by the stored variables, instead of using
getrusage, but it would not take into account the auxiliary matrices needed during the computation
of C` and K.

29

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 9. Curved L-shaped domain Ω and the initial mesh for the example of §7.2.2

and W = span{β ◦ F−1, β ∈ H}. We want to compute the solution uH ∈ W of the
discrete problem ∫

Ω

∇uH · ∇v =

∫
Ω

fv, ∀ v ∈ V,

where V := {v ∈ W, v|∂Ω = 0}, and uH = u0 + ug, with u0 ∈ V , and the lifting
ug ∈W such that ug|∂Ω = g is computed with an L2 projection on the boundary.

In the module ESTIMATE we consider two different a posteriori error indicators,
the first one is element-based [7], and gives an indicator for each active element Q ∈ Q,
which corresponds to the active element F(Q) in the physical domain, defined by

EQ := hQ

(∫
F(Q)

|f + ∆uH|2
) 1

2

,

where hQ := diam(F(Q)), whereas the second is function-based [5], and gives an
indicator for each active basis function β ∈ H, and the corresponding active function
in the physical domain β ◦ F−1, defined by

Eβ := hβ
√
aβ

(∫
F(supp β)

|f + ∆uH|2(β◦F−1)

) 1
2

,

where hβ := diam(F(suppβ)) and aβ is the coefficient of the partition of unity in (5).
In the module MARK we use these estimators to compute a setM (eitherM :=

Me ⊂ Q or M := Mf ⊂ H) using the maximum strategy with parameter θ = 0.5,
i.e., M consists of the entities, active elements Q or basis functions β, such that

EQ ≥ θ max
Q′∈Q

EQ′ , or Eβ ≥ θ max
β′∈H

Eβ′ .

Finally, in the module REFINE, we use the marked set M to enlarge the hierarchy
of subdomains as explained in Section 4.1.1, in order to get a finer hierarchical mesh
and its corresponding hierarchical basis.

In Figure 10 we compare the energy error decay in terms of degrees of freedom,
considering splines of maximum smoothness and degrees 2, 3, 4 and 5. For each case,
we compare the behavior of tensor product B-splines refined globally with the two
local adaptive refinement strategies just described above using hierarchical splines.
Since the solution has a singularity in the reentrant corner of the domain Ω, the
global refinement does not provide optimal order of convergence, but both adaptive
strategies do.

30

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

10
2

10
3

10
4

10
−3

10
−2

10
−1

degree = 2

Degrees of freedom

E
n

e
rg

y
 e

rr
o

r

Global ref

Adaptive ref (elem)

Adaptive ref (fun)

C*(DOFs)
−2/2

10
2

10
3

10
4

10
−3

10
−2

10
−1

degree = 3

Degrees of freedom

E
n

e
rg

y
 e

rr
o

r

Global ref

Adaptive ref (elem)

Adaptive ref (fun)

C*(DOFs)
−3/2

10
2

10
3

10
4

10
−3

10
−2

10
−1

degree = 4

Degrees of freedom

E
n

e
rg

y
 e

rr
o

r

Global ref

Adaptive ref (elem)

Adaptive ref (fun)

C*(DOFs)
−4/2

10
2

10
3

10
4

10
−3

10
−2

10
−1

degree = 5

Degrees of freedom

E
n

e
rg

y
 e

rr
o

r

Global ref

Adaptive ref (elem)

Adaptive ref (fun)

C*(DOFs)
−5/2

Fig. 10. Energy error decay vs. degrees of freedom, using tensor product splines and hierarchical
splines, i.e., global refinement and local adaptive refinement guided by two different a posteriori error
indicators.

Fig. 11. Comparison of meshes obtained with the function-based error indicator for
different polynomial degrees; biquadratic with 9 levels, 396 elements and 410 DOFs (left),
bicubic with 8 levels, 234 elements and 286 DOFs (middle) and biquartic with 7 levels, 183
elements and 282 DOFs (right).

Finally, we show some meshes obtained with the local refinement guided by the
function-based error indicator in Figure 11, for biquadratic, bicubic and biquartic
splines. In all cases, the error obtained is ‖∇(u− uH)‖L2(Ω) ≈ 3.10−3.

7.2.3. Coarsening in the unit square. As a simple example, to test the per-
formance of the algorithms for coarsening, we consider the linear elliptic problem (20),
where the domain Ω = [0, 1]2 is the unit square, and the data f and g are chosen such
that the exact solution u is given by u(x, y) = tan−1(25(x − y)), which is shown in
Figure 12. For this example we start from a very fine mesh, and apply the following

31

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Fig. 12. Exact solution of the problem considered for coarsening (left), and the final meshes
obtained after coarsening marking by elements (middle) and by functions (right), with θ = 0.3.

adaptive coarsening loop

SOLVE −→ ESTIMATE −→ MARK −→ COARSEN,

where the modules SOLVE and ESTIMATE are as explained in §7.2.2, in the module
MARK, that we detail below, we use the output of ESTIMATE to select a set of ele-
ments or functions for coarsening (or reactivation), and in the module COARSEN we
use the marked set to shrink the hierarchy of subdomains as explained in Section 4.1.2,
in order to get a coarser hierarchical mesh and its corresponding hierarchical basis.

In the module MARK a list of elements or functions to be reactivated must be
selected from the results of the a posteriori error estimators, that work on active enti-
ties. We start collecting a fixed percentage of active entities for which the estimated
error is small: we denote by NQ and N the number of active elements and functions,
respectively, and for a fixed parameter θ ∈ (0, 1) we set MA as the dθNQe active ele-
ments or the dθNe active functions with the smallest estimators. LetMA

` :=MA∩Q`
for the element-based estimators, and MA

` := MA ∩ B` for the function-based esti-
mators. We give now a possible way to mark the candidates to reactivate for each
case.

• Marking cells to reactivate: If MA
`+1 is a set of active cells of level `+ 1,

we define Me
` ⊂ De` as the set of the deactivated cells of level ` such that all

their children belong to MA
`+1, i.e.,

Me
` := {Q ∈ Q` | ∀Q′ ∈ Q`+1, (Q′ ⊂ Q ⇒ Q′ ∈MA

`+1)}.

• Marking functions to reactivate: IfMA
`+1 is a set of active basis functions

of level ` + 1, we define Mf
` ⊂ D

f
` as the set of functions admissible for

reactivation of level ` such that at least one child belongs to MA
`+1, i.e.,

Mf
` := {β ∈ Df` | ∃β

′ ∈ C(β) ∩MA
`+1}.

For the numerical tests, we consider bicubic splines with maximum smoothness,
and start from a uniform Cartesian mesh of 16384 elements, corresponding to a 8-level
hierarchical mesh with 27 = 128 subdivisions in each direction. We apply the two
strategies of coarsening, marking by elements and marking by functions, both of them
with the values θ = 0.3 and θ = 0.5. In Tables 1 and 2 we show, after each coarsening
step, the number of active functions and elements, the error in H1 seminorm, and the
coarsest level for which there exist active functions. From the results in the tables,
we see that all the strategies reduce the amount of degrees of freedom to around one

32

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Table 1
Results of the coarsening algorithm marking deactivated elements (left) or deactivated functions

(right) with θ = 0.3. (C.Lev.: coarsest level).

DOFs NQ error C.Lev.

17161 16384 0.00146624 8
13183 12814 0.00146624 7
10267 10162 0.00146624 6
8143 8218 0.00146628 5
6451 6754 0.00146678 5
4999 5608 0.00147311 4
4471 4858 0.00149726 4

DOFs NQ error C.Lev.

17161 16384 0.00146624 8
13399 13018 0.00146624 7
10231 10150 0.00146624 6
7711 7810 0.00146632 5
5905 6112 0.00146757 5
4429 4732 0.00148676 4
3307 3670 0.00167448 4

Table 2
Results of the coarsening algorithm marking deactivated elements (left) or deactivated functions

(right) with θ = 0.5. (C.Lev.: coarsest level).

DOFs NQ error C.Lev.

17161 16384 0.00146624 8
10693 10444 0.00146624 7
6631 6730 0.00146676 6
4249 4552 0.00150103 5
3043 3466 0.00185167 4

DOFs NQ error C.Lev.

17161 16384 0.00146624 8
10969 10708 0.00146624 7
6955 7042 0.00146655 6
4285 4588 0.00149792 5
2347 2746 0.00236409 4

fourth without significantly affecting the accuracy. Further coarsening increases the
error, specially for higher values of θ. We remark that, in all the tests, the finest level
function at every step is of level 8.

In Figure 12 we show the final meshes obtained when marking by elements (mid-
dle) and by functions (right), with θ = 0.3. It can be seen that marking by elements
may lead to isolated elements, that do not activate any function of their level, while
marking by functions produces a “cleaner” mesh. Finally, to see how the algorithm
works, we show in Figure 13 the meshes corresponding to the last three steps of the
coarsening process when marking by functions with θ = 0.5.

8. Conclusions. We have introduced the data structures and algorithms to per-
form refinement and coarsening of hierarchical splines. Our algorithms cover the cases
of standard or simplified hierarchical splines, with or without truncation. In partic-
ular, we have presented a new method to apply coarsening that, unlike previously
existing methods, can be understood as the inverse of refinement. All the algorithms
have been implemented in the open-source Octave code GeoPDEs, and tested in sim-
ple numerical examples. We plan to analyse different coarsening strategies in a future
work.

Acknowledgements. The authors would like to thank Cesare Bracco for his help

in the implementation of truncated functions, specially regarding the matrix of Section 4.3,

and for beta testing. This work was partially supported by the Argentina-Italy bilateral

project “Simulation of biomolecules and biomembranes: a challenge for numerical analysis”

funded by CNR and CONICET (2015-2016). Eduardo M. Garau was partially supported

by CONICET through grant PIP 112-2011-0100742, by Universidad Nacional del Litoral

through grants CAI+D 500 201101 00029 LI, 501 201101 00476 LI, by Agencia Nacional de

Promoción Cient́ıfica y Tecnológica, through grants PICT-2012-2590 and PICT-2014-2522

33

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Fig. 13. Meshes obtained at the last three steps of coarsening marking by functions, with θ = 0.5.

(Argentina). Rafael Vázquez was partially supported by the European Research Council

through the FP7 ERC Consolidator Grant no. 616563 HIGEOM, by European Union’s Hori-

zon 2020 research and innovation programme through the grant no. 680448 CAxMan, and

by the Italian Ministry of Education, University and Research through the project PRIN-

2012HBLYE4. This support is gratefully acknowledged.

Appendix A. Properties and methods of the classes in GeoPDEs.
We list the properties and methods of the new hierarchical classes implemented in
GeoPDEs. Tables 3 and 4 contain the properties of the classes that define the hierar-
chical mesh and the hierarchical space, respectively. Tables 5 and 6 contain the main
methods for the same classes.

Table 3
The properties of the hierarchical mesh class.

Name Type Size Description

ndim Scalar 1×1 Dimension of the parametric domain

rdim Scalar 1×1 Dimension of the physical space in which the
domain is embedded

nlevels Scalar 1×1 Number of levels of the hierarchical mesh

nsub Array 1×ndim Number of subintervals for h-refinement, in
each parametric direction

nel Scalar 1×1 Total number of elements of the mesh

nel per level Scalar 1×nlevels Number of active elements in each level

active Cell array 1×nlevels Indices of the active elements in each level

deactivated Cell array 1×nlevels Indices of deactivated elements in each level

mesh of level msh cartesian or
msh multipatch

1×nlevels Cartesian grid (or multipatch grid) of each
level

msh lev Cell array
(struct)

1×nlevels Quadrature and parametrization informa-
tion for the active elements of each level

boundary hierarchical mesh 1×(2*ndim) A mesh object for each boundary side

REFERENCES

[1] C. Apprich, K. Höllig, J. Hörner, A. Keller, and E. Nava Yazdani, Finite Element Ap-
proximation with Hierarchical B-Splines, Springer International Publishing, Cham, 2015,
pp. 1–15, http://dx.doi.org/10.1007/978-3-319-22804-4 1.

[2] L. Beirão da Veiga, A. Buffa, G. Sangalli, and R. Vázquez, Mathematical analysis of
variational isogeometric methods, Acta Numer., 23 (2014), pp. 157–287, http://dx.doi.org/
10.1017/S096249291400004X.

34

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

http://dx.doi.org/10.1007/978-3-319-22804-4_1
http://dx.doi.org/10.1017/S096249291400004X
http://dx.doi.org/10.1017/S096249291400004X

Table 4
The properties of the hierarchical space class.

Name Type Size Description

type String 1×1 Type of hierarchical space: either
‘standard’ or ‘simplified’

truncated Logical 1×1 Decide whether to use the truncated
basis or not

nlevels Scalar 1×1 Number of levels of the hierarchical
space (equal to the number of levels
of the mesh)

ndof Scalar 1×1 Total number of basis functions of
the space

ndof per level Scalar 1×nlevels Number of active functions in each
level

active Cell array 1×nlevels Indices of the active functions in
each level

deactivated Cell array 1×nlevels Indices of the deactivated functions
in each level

space of level sp scalar or
sp multipatch

1×nlevels Tensor product space (or multipatch
space) for each level

Proj Cell array (nlevels-1)×ndim
(nlevels-1)×npatch

Subdivision matrices for the univari-
ate spaces. For multipatch spaces,
they are stored for each patch

Csub Cell array 1×nlevels Subdivision matrix C`, to write ac-
tive functions as linear combinations
of basis functions of finer levels

coeff pou Array ndof×1 Coefficients for the partition of unity

boundary hierarchical space 1×(2*ndim) A space object for each boundary
side

dofs Array ndof×1 Only for boundary spaces, global
numbering (in the bulk domain) of
the basis functions on the boundary

Table 5
The methods of the hierarchical mesh class.

Method name Output Description

hmsh add new level hierarchical mesh
object

Add a new empty level, without active or deac-
tivated elements

hmsh remove empty level hierarchical mesh
object

Remove the finest level if it is empty

hmsh refine hierarchical mesh
object

Refine the hierarchical mesh from a list of
marked elements, as in Algorithm 3

hmsh coarsen hierarchical mesh
object

Coarsen the hierarchical mesh from a list of
marked elements, as in Algorithm 11

hmsh get children Array Compute the children of a given element (or a
list of elements)

hmsh get parent Scalar Compute the parent of a given element (or a list
of elements)

hmsh plot cells Figure For curves and surfaces, draw the hierarchical
mesh

[3] P. Bornemann and F. Cirak, A subdivision-based implementation of the hierarchical B-spline
finite element method, Comput. Methods Appl. Mech. Engrg., 253 (2013), pp. 584 – 598,

35

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

Table 6
The methods of the hierarchical space class.

Method name Output Description

hspace add new level hierarchical space
object

Add a new empty level, without active or
deactivated functions

hspace remove empty level hierarchical space
object

Remove the finest level, if it is empty

hspace refine hierarchical space
object

Refine the hierarchical space, as in Algo-
rithms 6 and 7

hspace coarsen hierarchical space
object

Coarsen the hierarchical space, as in Al-
gorithms 13 and 14

hspace get children Array Compute the children of a given basis
function (or a list of functions)

hspace get parents Array Compute the parents of a given basis
function (or a list of functions)

hspace subdivision matrix Cell array Compute the subdivision matrices C` as
in Section 3.2

hspace eval hmsh NDArray or cell array
(see function help)

Evaluate the computed solution in the
quadrature points of the hierarchical
mesh

Other methods, analogous to the ones existing for tensor product spaces (see [28])

sp drchlt l2 proj, sp eval, sp h1 error, sp l2 error, sp to vtk,

op u v hier, op gradu gradv hier, op f v hier

http://dx.doi.org/10.1016/j.cma.2012.06.023.
[4] F. Buchegger, B. Jüttler, and A. Mantzaflaris, Adaptively refined multi-patch B-splines

with enhanced smoothness, Appl. Math. Comput., 272, Part 1 (2016), pp. 159 – 172, http:
//dx.doi.org/10.1016/j.amc.2015.06.055. Subdivision, Geometric and Algebraic Methods,
Isogeometric Analysis and Refinability.

[5] A. Buffa and E. M. Garau, A posteriori error estimators for hierarchical B-spline discretiza-
tions. In preparation.

[6] A. Buffa and E. M. Garau, Refinable spaces and local approximation estimates for hierar-
chical splines, IMA J. Numer. Anal., (2016), http://dx.doi.org/10.1093/imanum/drw035.
In press.

[7] A. Buffa and C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Error
estimator and convergence, Mathematical Models and Methods in Applied Sciences, 26
(2016), pp. 1–25, http://dx.doi.org/10.1142/S0218202516500019.

[8] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: toward integra-
tion of CAD and FEA, John Wiley & Sons, 2009.

[9] C. de Boor, A practical guide to splines, vol. 27 of Applied Mathematical Sciences, Springer-
Verlag, New York, revised ed., 2001.

[10] C. de Falco, A. Reali, and R. Vázquez, GeoPDEs: a research tool for Isogeometric Anal-
ysis of PDEs, Adv. Engrg. Softw., 42 (2011), pp. 1020–1034, http://dx.doi.org/10.1016/j.
advengsoft.2011.06.010.

[11] C. Giannelli, B. Jüttler, S. K. Kleiss, A. Mantzaflaris, B. Simeon, and J. Špeh, THB-
splines: An effective mathematical technology for adaptive refinement in geometric design
and isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 299 (2016), pp. 337 –
365, http://dx.doi.org/10.1016/j.cma.2015.11.002.

[12] C. Giannelli, B. Jüttler, and H. Speleers, THB-splines: The truncated basis for hierar-
chical splines, Comput. Aided Geom. Design., 29 (2012), pp. 485 – 498, http://dx.doi.org/
10.1016/j.cagd.2012.03.025.

[13] C. Giannelli, B. Jüttler, and H. Speleers, Strongly stable bases for adaptively refined
multilevel spline spaces, Adv. Comput. Math., 40 (2014), pp. 459–490, http://dx.doi.org/
10.1007/s10444-013-9315-2.

[14] E. Grinspun, P. Krysl, and P. Schröder, CHARMS: A Simple Framework for Adaptive
Simulation, SIGGRAPH (ACM Transactions on Graphics), 21 (2002), pp. 281–290, http:
//dx.doi.org/10.1145/566654.566578.

36

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

http://dx.doi.org/10.1016/j.cma.2012.06.023
http://dx.doi.org/10.1016/j.amc.2015.06.055
http://dx.doi.org/10.1016/j.amc.2015.06.055
http://dx.doi.org/10.1093/imanum/drw035
http://dx.doi.org/10.1142/S0218202516500019
http://dx.doi.org/10.1016/j.advengsoft.2011.06.010
http://dx.doi.org/10.1016/j.advengsoft.2011.06.010
http://dx.doi.org/10.1016/j.cma.2015.11.002
http://dx.doi.org/10.1016/j.cagd.2012.03.025
http://dx.doi.org/10.1016/j.cagd.2012.03.025
http://dx.doi.org/10.1007/s10444-013-9315-2
http://dx.doi.org/10.1007/s10444-013-9315-2
http://dx.doi.org/10.1145/566654.566578
http://dx.doi.org/10.1145/566654.566578

[15] P. Hennig, S. Müller, and M. Kästner, Bézier extraction and adaptive refinement of trun-
cated hierarchical NURBS, Comput. Methods Appl. Mech. Engrg., 305 (2016), pp. 316–339,
http://dx.doi.org/10.1016/j.cma.2016.03.009.

[16] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech.
Engrg., 194 (2005), pp. 4135–4195.

[17] W. Jiang and J. E. Dolbow, Adaptive refinement of hierarchical B-spline finite elements
with an efficient data transfer algorithm, Internat. J. Numer. Methods Engrg., 102 (2015),
pp. 233–256, http://dx.doi.org/10.1002/nme.4718.

[18] G. Kiss, C. Giannelli, and B. Jüttler, Algorithms and data structures for truncated hi-
erarchical B-splines, in Mathematical Methods for Curves and Surfaces, M. Floater,
T. Lyche, M.-L. Mazure, K. Mørken, and L. L. Schumaker, eds., vol. 8177 of Lec-
ture Notes in Computer Science, Springer Berlin Heidelberg, 2014, pp. 304–323, http:
//dx.doi.org/10.1007/978-3-642-54382-1 18.

[19] R. Kraft, Adaptive and linearly independent multilevel B-splines, in Surface fitting and mul-
tiresolution methods (Chamonix–Mont-Blanc, 1996), Vanderbilt Univ. Press, Nashville,
TN, 1997, pp. 209–218.

[20] P. Krysl, E. Grinspun, and P. Schröder, Natural hierarchical refinement for finite element
methods, Internat. J. Numer. Methods Engrg., 56 (2003), pp. 1109–1124, http://dx.doi.
org/10.1002/nme.601.

[21] G. Kuru, C. Verhoosel, K. van der Zee, and E. van Brummelen, Goal-adaptive isogeo-
metric analysis with hierarchical splines, Comput. Methods Appl. Mech. and Engrg., 270
(2014), pp. 270–292, http://dx.doi.org/10.1016/j.cma.2013.11.026.

[22] L. Romani and G. Casciola, A general matrix representation for non-uniform B-spline sub-
division with boundary control, ALMA-DL, Digital Library of the University of Bologna,
(2007), http://dx.doi.org/10.6092/unibo/amsacta/2532.

[23] D. Schillinger, L. Dedè, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and
T. J. Hughes, An isogeometric design-through-analysis methodology based on adaptive
hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD
surfaces, Comput. Methods Appl. Mech. Engrg., 249-252 (2012), pp. 116 – 150, http:
//dx.doi.org/10.1016/j.cma.2012.03.017.

[24] L. L. Schumaker, Spline functions: basic theory, Cambridge Mathematical Library, Cambridge
University Press, Cambridge, third ed., 2007.

[25] M. Scott, D. Thomas, and E. Evans, Isogeometric spline forests, Comput. Methods Appl.
Mech.Engrg., 269 (2014), pp. 222 – 264, http://dx.doi.org/10.1016/j.cma.2013.10.024.

[26] H. Speleers and C. Manni, Effortless quasi-interpolation in hierarchical spaces, Numer.
Math., (2015), pp. 1–30, http://dx.doi.org/10.1007/s00211-015-0711-z.

[27] İ. Temizer and C. Hesch, Hierarchical NURBS in frictionless contact, Comput. Methods
Appl. Mech. Engrg., 299 (2016), pp. 161 – 186, http://dx.doi.org/10.1016/j.cma.2015.11.
006.

[28] R. Vázquez, A new design for the implementation of isogeometric analysis in Octave and
Matlab: GeoPDEs 3.0, Comput. Math. Appl., (2016), pp. –, http://dx.doi.org/10.1016/j.
camwa.2016.05.010. In press.

[29] A.-V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon, A hierarchical approach to adap-
tive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200
(2011), pp. 3554–3567, http://dx.doi.org/10.1016/j.cma.2011.09.004.

37

Prep
rin

t

IMAL PREPRINT # 2016-0034

 ISSN 2451-7100
Publication date: July 11, 2016

http://dx.doi.org/10.1016/j.cma.2016.03.009
http://dx.doi.org/10.1002/nme.4718
http://dx.doi.org/10.1007/978-3-642-54382-1_18
http://dx.doi.org/10.1007/978-3-642-54382-1_18
http://dx.doi.org/10.1002/nme.601
http://dx.doi.org/10.1002/nme.601
http://dx.doi.org/10.1016/j.cma.2013.11.026
http://dx.doi.org/10.6092/unibo/amsacta/2532
http://dx.doi.org/10.1016/j.cma.2012.03.017
http://dx.doi.org/10.1016/j.cma.2012.03.017
http://dx.doi.org/10.1016/j.cma.2013.10.024
http://dx.doi.org/10.1007/s00211-015-0711-z
http://dx.doi.org/10.1016/j.cma.2015.11.006
http://dx.doi.org/10.1016/j.cma.2015.11.006
http://dx.doi.org/10.1016/j.camwa.2016.05.010
http://dx.doi.org/10.1016/j.camwa.2016.05.010
http://dx.doi.org/10.1016/j.cma.2011.09.004

	Introduction
	The basics about hierarchical splines
	Underlying sequence of tensor product spline spaces
	Hierarchical B-splines
	A simplified hierarchical B-spline space
	Truncated hierarchical B-splines

	Isogeometric analysis with hierarchical splines
	The general setting
	Matrix assembly
	Rational hierarchical splines
	Multiple patches
	Boundary spaces

	Refinement and coarsening of hierarchical splines
	Definition of a refined/coarsened hierarchical mesh and space
	Construction of an enlargement of the subdomains for refinement
	Construction of a shrinking of the subdomains for coarsening

	Coarsening as the inverse of refinement
	Refinement matrix between hierarchical bases

	Data structures for the implementation
	Data structures for the tensor product spaces
	Data structure for the hierarchical mesh
	Data structure for the hierarchical space

	Algorithms for refinement and coarsening
	Refinement algorithms
	Coarsening algorithms

	Implementation and numerical tests
	Implementation of hierarchical splines in GeoPDEs
	Numerical tests
	Memory consumption of hierarchical splines and THB-splines
	Refinement in a curved L-shaped domain
	Coarsening in the unit square

	Conclusions
	Appendix A. Properties and methods of the classes in GeoPDEs
	References

