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Abstract

We develop an a posteriori error estimator which focuses on the local H1 error on a region
of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up
to oscillation terms. The new idea is very simple and applies to a large class of problems.
An adaptive method guided by this estimator is implemented and compared to other local
estimators, showing an excellent performance.
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1 Introduction

In many practical problems, the region of interest is much smaller than the whole domain where
a differential equation must be solved to obtain meaningful results. The goal of this article is to
design a new adaptive method for the approximation of general second order elliptic problems,
with the adaptive strategy focused on controlling the error in a localized region of interest.
Throughout this article, local error stands for the H1(Ω0) error and Ω0 is an open subset of
the whole domain Ω which we refer to as region of interest. Adaptive methods and a posteriori
error estimators for controlling local errors in elliptic problems have already been developed and
studied [LN03, Dem07, Dem10]. In these papers the local error is bounded by the sum of two
terms. TheH1-type estimators on a region slightly larger than Ω0 and a weaker norm of the error
on the whole domain; due to the so-called pollution effect. Demlow [Dem10] considers Poisson’s
equation −∆u = f and bounds the latter by the L2(Ω) error, which in turn is bounded by the
Lp(Ω) estimators for some p > 2 —when the L2(Ω) estimators are not available due to geometry
constraints (e.g. reentrant corners). Recall that all known L2-type a posteriori error estimators
are not a guaranteed upper bound for the L2(Ω) error unless the problem is H2-regular, because
the only available proofs are based on duality techniques. Liao and Nochetto [LN03], instead,
resort to estimators for the error in a weighted L2(Ω) norm, with weights that are singular at
the reentrant corners; their result is valid for the equation −∇ · (A∇u) = f with A smooth.

In this work we bound the local H1 error by a weighted H1 error on the whole domain,
and then by a posteriori error estimators of residual type. The weight is chosen such that the
global weighted error is an upper bound of the local H1 error, but does not overestimate it by
too much. This is a simple idea, motivated by the need to use weighted norms when working
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with point sources, and has the advantage of allowing us to work with the general second order
linear elliptic PDE on Lipschitz polygonal/polyhedral domains in 2D/3D without convexity
constraints, allowing also discontinuous coefficients. We consider the following problem on a
Lipschitz domain Ω ⊂ Rn, n = 2, 3, with a polygonal/polyhedral boundary ∂Ω:{

−∇ ·
(
A∇u

)
+ b · ∇u+ cu = g, in Ω

u = 0 on ∂Ω,
(1)

where A ∈ L∞(Ω;Rn×n) is symmetric, piecewise W 1,∞ and uniformly positive definite over Ω,
i.e., there exist constants 0 < γ1 ≤ γ2 such that

γ1|ξ|2 ≤ ξTA(x)ξ ≤ γ2|ξ|2, ∀x ∈ Ω, ξ ∈ Rn;

b ∈W 1,∞(Ω;Rn), and c ∈ L∞(Ω) with c− 1
2 div(b) ≥ 0.

We consider both the case of regular sources, i.e., g ∈ L2(Ω), and the case of a singular
point source assuming that g = f + νδx0 , where f ∈ L2(Ω), ν ∈ R and δx0 is the Dirac
delta distribution supported at an inner point x0 of Ω. Applications arise in different areas,
such as in the study of pollutant diffusion in aquatic media [ABR07], in the mathematical
modeling of electromagnetic fields [J75], or in optimal control of elliptic problems with state
constraints [C86]. Other applications involve the coupling between reaction-diffusion problems
taking place in domains of different dimension, which arise in tissue perfusion models [DQ08].

When ν = 0 (g = f ∈ L2(Ω)) we say that u ∈ H1
0 (Ω) := W 1,2

0 (Ω) is a weak solution of (1) if

B[u, v] = F (v), ∀ v ∈ H1
0 (Ω),

where B is the bilinear form given by

B[u, v] =

∫
Ω
A∇u · ∇v + b · ∇u v + c u v, (2)

and F (v) :=
∫

Ω fv. If ν 6= 0, the solution u of (1) does not belong to H1
0 (Ω), but defining

the weight ω(x) ∼= |x − x0|2α for certain values of α > 0, the following weak formulation is
well-posed [AGM14, Theorem 2.3]

u ∈ H1
0 (Ω, ω) : B[u, v] = F (v), ∀ v ∈ H1

0 (Ω, ω−1),

where F (v) =
∫

Ω fv+νδx0(v) and B[·, ·] is given by (2). Here, H1
0 (Ω, ω) and H1

0 (Ω, ω−1) denote
weighted Sobolev spaces which will be explicitely defined in the next section.

The main results of this article are presented in Section 3.2 where a posteriori error estima-
tors are presented for the weighted error, and the reliability and efficiency are discussed. The
numerical results of Section 4 show an excellent performance of an adaptive method guided by
these a posteriori estimators.

The rest of the article is organized as follows. In Section 2 we discuss the formulation of
elliptic problems in weighted Sobolev spaces, including the design of weights which localize the
error and cope with the singularities due to the point source. In Section 3 we state the discrete
formulation of the problem and present a posteriori error estimators for the weighted norm of
the error with their reliability and efficiency. In Section 4 we present numerical experiments.

2 Linear elliptic problems in weighted spaces

We start this section briefly introducing some notions about weighted Sobolev spaces, which
are useful for the purpose of this article.
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2.1 Weighted Sobolev spaces

We consider weights belonging to the Muckenhoupt class A2, which are defined as the set of
positive functions ω ∈ L1

loc(Rn) such that their A2-constant

sup
B

(
1

|B|

∫
B
ω(x) dx

)(
1

|B|

∫
B
ω(x)−1 dx

)
is finite, where the supremum is taken over all balls B in Rn.

Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. If ω ∈ A2, we denote by
L2(Ω, ω) the space of measurable functions u such that

‖u‖L2(Ω,ω) :=

(∫
Ω
|u(x)|2ω(x)dx

) 1
2

<∞.

Notice that L2(Ω, ω) is a Hilbert space equipped with the scalar product

〈u, v〉Ω,ω :=

∫
Ω
u(x)v(x)ω(x)dx.

We also define the weighted Sobolev space H1(Ω, ω) of weakly differentiable functions u
such that ‖u‖H1(Ω,ω) <∞, where

‖u‖H1(Ω,ω) := ‖u‖L2(Ω,ω) + ‖∇u‖L2(Ω,ω).

Finally, H1
0 (Ω, ω) is the closure of C∞0 (Ω) in H1(Ω, ω). By [FKS82, Theorem 1.3] we have that

a Poincaré inequality holds in H1
0 (Ω, ω), and thus,

‖u‖H1
0 (Ω,ω) := ‖∇u‖L2(Ω,ω)

is a norm in H1
0 (Ω, ω) equivalent to the inherited norm ‖u‖H1(Ω,ω). More precisely, there exists

a constant CP > 0, depending on n, the diameter of Ω, and the A2-constant of ω such that

‖u‖H1
0 (Ω,ω) ≤ ‖u‖H1(Ω,ω) ≤ CP ‖u‖H1

0 (Ω,ω), u ∈ H1
0 (Ω, ω). (3)

2.2 Well-posedness

The next result generalizes those given by [AGM14, Theorem 2.3] and [NOS16, Lemma 7.7].
We remark that the only required properties on the weight function ω are:

Assumption 2.1. The positive weight ω ∈ L1
loc(Rn) satisfies the following:

• ω ∈ A2, ω ∈ L∞(Ω);

• H1
0 (Ω) ↪→ L2(Ω, ω−1), i.e., there exists a constant CE > 0 such that

‖v‖L2(Ω,ω−1) ≤ CE‖∇v‖L2(Ω), for v ∈ H1
0 (Ω).

Remark 2.2. By [NOS16, Theorem 6.1] (see also [CW85]) we have that a weight ω ∈ A2 fulfills
H1

0 (Ω) ↪→ L2(Ω, ω−1) if there exists a constant Cω > 0 such that the following compatibility
condition holds:(∫

B(x,r)
ω−1

)(∫
B(x,R)

ω−1

)−1

≤ Cω
( r
R

)n−2
, for all x ∈ Ω and r ≤ R. (4)
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Theorem 2.3. Let B[·, ·] : H1
0 (Ω, ω) × H1

0 (Ω, ω−1) → R be as in (2), and let ω be a weight
satisfying Assumption 2.1. Then, for each F ∈ (H1

0 (Ω, ω−1))′, there exists a unique solution
u ∈ H1

0 (Ω, ω) of
B[u, v] = F (v), ∀ v ∈ H1

0 (Ω, ω−1),

which satisfies
‖u‖H1

0 (Ω,ω) ≤ C∗‖F‖(H1
0 (Ω,ω−1))′ ,

where the constant C∗ = 2
γ1

(
1 + ‖ω‖

1
2

L∞(Ω)
CPCE
γ1

max{‖b‖L∞(Ω), ‖c‖L∞(Ω)}
)

.

Moreover, the following inf-sup condition holds:

inf
w∈H1

0 (Ω,ω)
sup

v∈H1
0 (Ω,ω−1)

B[w, v]

‖w‖H1
0 (Ω,ω)‖v‖H1

0 (Ω,ω−1)

≥ 1

C∗
. (5)

The proof of this theorem is identical to that of [AGM14, Theorem 2.3] and will thus be
omitted in this article.

2.3 Global weighted norms to localize the energy norm

Let the region of interest Ω0 be a fixed open subset of Ω. We are interested in estimating
‖e‖H1(Ω0), where e is the error between the weak solution of problem (1) and its finite element
approximation. We will develop a posteriori error estimators and propose adaptive methods
oriented towards reducing the local error ‖e‖H1(Ω0) with the least amount of degrees of freedom.

The weight in charge of localizing the H1-norm is ϕ0 which we only assume to be in L1
loc(Rn)

and satisfy the following properties:

(i) ϕ0(x) > 0 for a.e. x ∈ Rn and ϕ0 ∈ A2.

(ii) ϕ0(x) ≤ 1, for a.e. x ∈ Ω and ϕ0(x) = 1, for a.e. x ∈ Ω0.

(iii) There exists a constant Cϕ0 > 0 such that(∫
B(x,r)

ϕ−1
0

)(∫
B(x,R)

ϕ−1
0

)−1

≤ Cϕ0

( r
R

)n−2
, for all x ∈ Ω and r ≤ R. (6)

A simple way to construct such a weight is to let ϕ0(x) := ϕ(dist(x,Ω0)), with ϕ : R+ → R+

a decreasing positive function such that ϕ(0) = 1. In Section 4 we make some particular choices
of ϕ and ϕ0.

Recall that the source term of problem (1) is g = f + νδx0 , with f ∈ L2(Ω), ν ∈ R and δx0

is the Dirac delta distribution supported at an inner point x0 of Ω.
The use of a weight will also allow us to overcome the difficulty produced by a Dirac delta

source term. We thus consider two cases depending on the actual presence of a point source:

• Case 1: There is no point source. If ν = 0, let

ω(x) = ϕ0(x), x ∈ Rn. (7a)

• Case 2: There is a point source. If ν 6= 0, let

ω(x) = min

((dx0(x)

D0

)2α
, ϕ0(x)

)
, x ∈ Rn. (7b)

Here, D0 := dist(x0,Ω0) = infx∈Ω0 |x− x0| > 0, dx0(x) := |x− x0|, for x ∈ Rn, and α
is fixed, with α ∈ I, where I = (n/2− 1, n/2) if b = 0 and c = 0 and I = (n/2− 1, 1)
otherwise.
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Since dβx0
∈ A2 if and only if −n < β < n [AGM14], and since ϕ0 ∈ A2 we conclude that

in both cases ω ∈ A2, because—as can be easily checked—the minimum of two A2 weights also
belongs to A2. Furthermore, since ω = 1 in Ω0,

‖u‖H1(Ω0) ≤ ‖u‖H1(Ω,ω),

i.e., the usual local energy ‖u‖H1(Ω0) is bounded above by the global weighted norm ‖u‖H1(Ω,ω).
This bound becomes sharper when ϕ0 is chosen smaller on Ω \ Ω0.

In Section 3.2 we develop a posteriori estimators for the error ‖e‖H1(Ω,ω), they will be used
to guide an adaptive method, its goal is to reduce the desired quantity ‖e‖H1(Ω0).

2.4 Weak formulation

In order to state a variational formulation for the linear elliptic problem (1), we first note that,
due to the definition of the weight ω given by (7), if ν 6= 0, H1

0 (Ω, ω−1) ⊂ H1
0 (Ω,d−2α

x0
). Thus,

in view of [KMR97, Lema 7.1.3] we have that 〈g, v〉 :=
∫

Ω fv + ν〈δx0 , v〉 is a bounded a linear
functional on H1

0 (Ω, ω−1), for f ∈ L2(Ω), whenever n
2 − 1 < α < n

2 . We consider the following
weak formulation of problem (1):

u ∈ H1
0 (Ω, ω) : B[u, v] =

∫
Ω
fv + ν〈δx0 , v〉, ∀ v ∈ H1

0 (Ω, ω−1). (8)

Recall that B is the bilinear form given by (2), which is clearly well-defined and bounded in
H1

0 (Ω, ω) × H1
0 (Ω, ω−1) due to Hölder inequality. Moreover, the compatibility condition (4)

holds for ω defined in (7) due to assumption (6) on ϕ0 and the fact that it also holds for the
weight d2α, for α ∈ I, as can be easily checked. Therefore, as a consequence of Theorem 2.3, the
bilinear form B[·, ·] satisfies the inf-sup condition (5), which yields the existence and uniqueness
of solution to the variational problem (8).

3 Discrete problem and a posteriori error analysis

3.1 Finite element discretization

Let T be a conforming triangulation of the domain Ω ⊂ Rn. That is, a partition of Ω into
n-simplexes such that if two elements intersect, they do so at a full vertex/edge/face of both
elements. We define the mesh regularity constant

κ := sup
T∈T

diam(T )

ρT
,

where diam(T ) is the diameter of T , and ρT is the radius of the largest ball contained in it.
Also, the diameter of any element T ∈ T is equivalent to the local mesh-size hT := |T |1/n, with
equivalence constants depending on κ.

On the other hand, we denote the subset of T consisting of an element T and its neighbors
by NT , and the union of the elements in NT by ST . More precisely, for T ∈ T ,

NT := {T ′ ∈ T | T ∩ T ′ 6= ∅}, ST :=
⋃

T ′∈NT

T ′.

We denote by EΩ the set of sides (edges for n = 2 and faces for n = 3) of the elements in T
which are inside Ω, and by E∂Ω the set of sides which lie on the boundary of Ω. We define SE
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as the union of the two elements sharing E, if E ∈ EΩ, and as the unique element TE satisfying
E ⊂ ∂TE if E ∈ E∂Ω.

For the discretization we consider piecewise polynomial Lagrange finite elements, more pre-
cisely, we let

V`T := {V ∈ H1
0 (Ω) | V|T ∈ P`(T ), ∀ T ∈ T }.

where ` ∈ N is a fixed polynomial degree. The discrete counterpart of (8) reads:

U ∈ V`T : B[U, V ] =

∫
Ω
fV + ν〈δx0 , V 〉, ∀V ∈ V`T . (9)

Notice that it is the standard finite element discretization. The weighted norms have no influence
in the formulation of the discrete problem.

3.2 A posteriori estimation of the local error

In this section we derive computable bounds for the error measured in the weighted norm
‖ · ‖H1(Ω,ω), where the weight function ω is given by (7).

Let u be the solution of (8) and let U ∈ VT be the solution of the discrete problem (9).
Integrating by parts on each T ∈ T we have that

B[U − u, v] =
∑
T∈T

(∫
T
Rv +

∫
∂T
Jv

)
− ν〈δx0 , v〉, ∀ v ∈ H1

0 (Ω, ω−1),

where R denotes the element residual given by

R|T := −∇ · (A∇U) + b · ∇U + cU − f, ∀T ∈ T ,

and J is the jump residual given by

J|E :=
1

2

[
A∇U|T1

· ~n1 +A∇U|T2
· ~n2

]
, if E ∈ EΩ, J|E = 0, if E ∈ E∂Ω.

Here, T1 and T2 denote the elements of T sharing E, and ~n1 and ~n2 are the outward unit
normals of T1 and T2 on E, respectively.

Let ωT := supx∈ST ω(x). We define the a posteriori local error estimator ηT by

η2
T :=

{
h2
TωT ‖R‖

2
L2(T ) + hTωT ‖J‖2L2(∂T ) + ν2D−2α

0 h2α+2−n
T , if x0 ∈ T

h2
TωT ‖R‖

2
L2(T ) + hTωT ‖J‖2L2(∂T ) , if x0 /∈ T

(10)

and the global error estimator η by η :=

(∑
T∈T

η2
T

) 1
2

.

Notice that for elements T such that ST ⊂ Ω0, ωT = 1 so that the local estimator ηT
coincides with the usual local H1-estimator, i.e.,

ηT =
(
h2
T ‖R‖

2
L2(T ) + hT ‖J‖2L2(∂T )

) 1
2
,

whereas for the others elements the usual local H1-estimator is weakened by the constant ωT .
The exact same proof of [AGM14, Theorem 5.1] allows us to conclude the assertion of the

following theorem.
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Theorem 3.1 (Reliability of the global error estimator). Let ω be defined by (7). Let u ∈
H1

0 (Ω, ω) be the solution of problem (8) and let U ∈ V`T be the solution of the discrete prob-
lem (9). Then, there exists a constant c1 = c1(κ, α) such that

‖U − u‖H1(Ω,ω) ≤ c1C∗CP η,

where C∗ is the continuous inf-sup constant from (5) and CP is the Poincaré constant from (3).

We now discuss the efficiency of the local error estimators. In this context, the boundedness
of the bilinear form yields the following: if CB := max{γ2, ‖b‖L∞ , ‖c‖L∞}, then∣∣∣B[U, v]−

(∫
Ω
fv + ν〈δx0 , v〉

)∣∣∣ = |B[U, v]− B[u, v]| ≤ CB‖U − u‖H1(Θ,ω)‖v‖H1(Θ,ω−1),

for all Θ ⊂ Ω and all v ∈ H1
0 (Ω, ω−1) with supp(v) ⊂ Θ. This bound and the usual steps with

scaled bubble functions allow us to conclude the following result, related to the elements which
are far away from x0; the detailed proof is omitted.

Theorem 3.2 (Efficiency of local estimators 1). Let u ∈ H1
0 (Ω, ω) be the solution of problem (8)

and let U ∈ V`T be the solution of the discrete problem (9). Then, there exists a constant
c2 = c2(κ) such that

c2ηT ≤ CTωCB‖U − u‖H1(ST ,ω) + oscT , (11)

for all T ∈ T such that x0 6∈ ST , where CTω :=
(

maxST ω

minST ω

) 1
2
. Here, the local oscillation oscT is

given by

oscT :=
(
h2
TωT

∥∥R−R∥∥2

L2(ST )
+ hTωT

∥∥J − J∥∥2

L2(∂T )

) 1
2
, (12)

where R|T ′ denotes the L2 projection of R on P`−1(T ′), for all T ′ ∈ T , and for each side E, J |E
denotes the L2 projection of J on P`−1(E).

As it usually happens for residual based error estimators, the lower bound is local, and
holds up to some oscillation terms. Notice that for elements T such that ST ⊂ Ω0, this result
coincides with the usual H1-local error estimation, because ω|ST

≡ 1.

Remark 3.3. We notice that the constants in the estimation (11), depend on the weight ω

only through the quotient CTω =
(

maxST ω

minST ω

) 1
2
, which tends to one when the meshsize tends to

zero, provided ω is continuous.

Now we consider the efficiency of the local estimators asociated to the elements T which are
near x0, more precisely, elements T such that x0 ∈ ST . As a consequence of [AGM14, Theorem

5.3] we obtain the following result, which holds if we assume that for such T ’s, ω|ST
=
(

dx0
D0

)2α
.

Taking into account the definition of ω given in (7), we notice that this will be the case as soon
as the mesh around x0 is fairly refined, because dist(x0,Ω0) > 0.

Theorem 3.4 (Efficiency of local estimators 2). Let u ∈ H1
0 (Ω, ω) be the solution of problem (8)

and let U ∈ V`T be the solution of the discrete problem (9). Then, there exists a constant
c3 = c3(κ, α) > 0 such that

c3ηT ≤ CB‖U − u‖H1(ST ,ω) + oscT ,

for all T ∈ T such that x0 ∈ ST .1

1 The oscillation oscT when x0 6∈ T is given by (12). In the case that x0 ∈ T , the jump oscillations in (12)
are considered over all E ∈ EΩ that touch T , not only those contained in ∂T (Cf. [AGM14]).

7

IMAL PREPRINT # 2016-0033
                          ISSN 2451-7100 
Publication date: April 26, 2016

Prep
rin

t



4 Numerical experiments and applications

In this section we perform some numerical experiments in two dimensional domains with linear
elements (` = 1), in order to illustrate the performance of our estimators and compare with
other already known estimators [AGM14, LN03, Dem10]. We consider a standard adaptive loop
of the form

Solve −→ Estimate/Mark −→ Refine.

The step Solve consists in solving the discrete system (9) for the current mesh T . For the
step Estimate/Mark we consider the computation of different alternative a posteriori error
estimators and select in M, for refinement, some elements of T according to different marking
strategies. This gives rise to particular adaptive algorithms that we describe in detail below.
The last step Refine consists in performing two bisections to each marked element, and refining
some extra elements in order to keep conformity of the meshes, using the newest-vertex bisection.
We used a custom implementation in MATLAB.

We now describe in detail the three Estimate/Mark alternatives to be considered in this
article. We start with our proposal.

Localized Weighted Estimators (LWE). We consider two possible choices for the function
ϕ in Section 2.3, that we call ϕ1 and ϕ2, respectively.

• ϕ1(x) :=
(
1 + a1

x
L

)−1
, where L := max

x∈Ω
dist(x,Ω0) and a1 is a parameter to be fixed.

• ϕ2(x) :=

{
a2, x > 0,

1, x = 0,
where a2 is a parameter to be fixed.

Then, for j = 1, 2, we denote ωj the corresponding weight given by (7), where ϕ0(x) =
ϕj(dist(x,Ω0)) and α = 1

2 . We compute the local estimators ηT given by (10) and apply
the Dörfler strategy with parameter θ = 0.5 for marking, i.e., we collect in M those elements
T ∈ T with largest estimators ηT until∑

T∈M
η2
T ≥ θ2

∑
T∈T

η2
T .

Liao-Nochetto’s Estimators (LNE). In [LN03], Liao and Nochetto considered the equa-
tion −div(A(x)∇u) = f in 2D with homogeneous Dirichlet boundary conditions for a smooth
coefficient matrix A(x), and proved that

‖u− U‖2H1(Ω0) ≤ CLN
∑
T∈T

η2
LN,T ,

with

η2
LN,T =

{
η2

1(T ) if T ⊂ Ω1,
1
d2 maxi | log hi|η2

0,−β(T ) if T 6⊂ Ω1,

where hi denotes the meshsize at the i-th reentrant corner of Ω, d = dist(Ω \ Ω1,Ω0), Ω1 ⊃ Ω0

and

η2
1(T ) = h2

T ‖ − div(A∇U)− f‖2L2(T ) + hT ‖[A∇U ]‖2L2(∂T ),

η2
0,−β(T ) = h4

T ‖(−div(A∇U)− f)σ−β‖2L2(T ) + h3
T ‖[A∇U ]σ−β‖2L2(∂T ).

8
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Here σ−β : Ω→ R is a mesh-dependent weight defined as

σ−β(x) = min
i

(
r2
i (x) + h(x)2

)−βi/2 ,
with ri the distance to the i-th corner of Ω, h(x) = hT if x ∈ T , and βi = max{0, 1 − π/wi}
where wi is the size of the inner angle at the i-th corner of Ω.

Notice that the estimators depend on the choice of the set Ω1, which is slightly larger than
Ω0, or in other words, on the parameter d = dist(Ω \ Ω1,Ω0).

They also propose to use Dörfler’s strategy, i.e., in each step of the adaptive loop, the set of
marked elements M is chosen to satisfy∑

T∈M
η2

LN,T ≥ θ2
∑
T∈T

η2
LN,T ,

for some θ ∈ (0, 1). We chose θ = 0.5 in our experiments below.

Demlow’s Estimators (DE) In [Dem10], Demlow considered Poisson equation −∆u = f
and proved that

‖u− U‖H1(Ω0) ≤ CD

( ∑
T∈T
T⊂Ω1

η2
1(T )

)1/2

+
1

d
1
2

+ 1
p

(∑
T∈T

ηpLp(T )

)1/p

 ,
for p = 2 if Ω is convex and 4 < p < ∞ otherwise, where η1(T ) is defined as in the previous
paragraph (with A = I), and

ηpLp(T ) = h2p
T ‖ −∆U − f‖pLp(T ) + hp+1

T ‖[∇U ]‖pLp(∂T ).

Demlow proved convergence of an AFEM with adaptive pollution control, which is based on
the following marking strategy [Dem10, Section 4.3]: Given ζ > 0,

1. if

( ∑
T∈T
T⊂Ω1

η2
1(T )

)1/2

> ζ

(∑
T∈T

ηpLp(T )

)1/p

, then

take M⊂ {T ∈ T : T ⊂ Ω1} such that
∑
T∈M

η2
1(T ) ≥ θ2

∑
T∈T
T⊂Ω1

η2
1(T ),

2. otherwise,

take M⊂ T such that
∑
T∈M

ηpLp(T ) ≥ θp
∑
T∈T

ηpLp(T ).

We chose θ = 0.5 in our experiments below.
Notice that in this case, not only the parameter d has to be chosen, but also the power p

and the coefficient ζ for the separate marking.

We present three examples. The first one with a known solution to Poisson’s equation on an
L-shaped domain with a point source, the second one with a known solution to a diffusion prob-
lem with discontinuous coefficient A, piecewise constant on a checkerboard pattern. The third
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one is a diffusion-advection-reaction problem, with variable coefficients, simulating a wiggling
flow on a canal. The goal of the first two examples is to compare the three proposals stated
above. We have run the algorithms considering different choices of the parameters a1 and a2

for the localized weighted estimators (LWE), the parameter d for Liao-Nochetto’s estimators
(LNE) and the parameters d and ζ for Demlow’s estimators (DE), but we only report the results
corresponding to the best performance of each proposal. The goal of the third example is to
show the performance of the newly proposed algorithm in a similar to real life problem, with
variable convection coefficient, which simulates the transport, decay and diffusion of a pollutant
from a point source.

4.1 Point source on L-shaped domain

We consider the equation −∆u = δx0 in Ω = (−1, 1)2 \ [0, 1)2 with Dirichlet boundary values
on ∂Ω and x0 = (0.5, 0.5). The boundary values were taken such that the exact solution is
u(x) = − 1

2π log |x− x0|+ |x|2/3 sin(2φ/3), with φ the angle between x and the positive x1-axis.
This solution exhibits two different singularities, due to the reentrant corner and the point
source, respectively. We considered Ω0 a strip on the left side of the domain, namely the set
Ω0 = (−1,−0.5)×(−1, 1). In order to compare our proposal LWE with those by [LN03, Dem10]
(LNE and DE, respectively), we show in Figure 1 the local error decay (i.e., ‖u − U‖H1(Ω0))
versus degrees of freedom (DOFs) obtained with the different strategies. We have considered
a1 = 105 and a2 = 10−4 in the weights ω1 and ω2 for LWE, respectively; d = 0.25 for LNE; and

d = 0.25, p = 5 and ζ = 1
2d
− 1

2
− 1
p for DE. We have also considered the algorithm guided by the

global weighted estimators (H1
α(Ω)-estimators, with α = 1

2) from [AGM14], because

‖u− U‖H1(Ω0) ≤ CΩ0,x0‖u− U‖H1
α(Ω) ≤ CAGM

(∑
T∈T

η2
AGM,T

) 1
2

, (13)

where ‖ · ‖H1
α(Ω) := ‖ · ‖L2(Ω,d2α

x0
) + ‖∇ · ‖L2(Ω,d2α

x0
).

We notice that the new proposal (LWE) behaves a bit better than the one by Liao-Nochetto
(LNE) and is very similar to the one by Demlow (DE).

The meshes obtained after 5, 10, 15, 20, 25 and 30 iterations of the adaptive algorithm
guided by the H1(Ω, ω1)-estimators (LWE) are shown in Figure 2. It is worth noticing how the
refinement concentrates around x0, the reentrant corner and the region of interest Ω0.

4.2 Discontinuous coefficients

We now consider the following diffusion equation with discontinuous diffusion coefficient{
−∇ · (a∇u) = 0 in Ω

u = g on ∂Ω,

with Ω = (−1, 1)2, and Ω0 = (−1, 1)× (−1,−0.75), a band at the lower side of the square. We
consider two situations, one with a(x1, x2) = 25.2741423690882 if x1x2 > 0 and 1 otherwise,
and another one with a(x1, x2) = 161.447638797588 if x1x2 > 0 and 1 otherwise. The boundary
values were taken so that the exact solution is, in polar coordinates, u(r, φ) = rγµ(φ), where

µ(φ) =


cos((π/2− σ)γ) · cos((φ− π/2 + ρ)γ) if 0 ≤ φ ≤ π/2
cos(ργ) · cos((φ− π + σ)γ) if π/2 ≤ φ ≤ π
cos(σγ) · cos((φ− π − ρ)γ) if π ≤ φ < 3π/2

cos((π/2− ρ)γ) · cos((φ− 3π/2− σ)γ) if 3π/2 ≤ φ ≤ 2π.
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Figure 1: Error decay and initial mesh with Ω0 shaded (225 DOFs). We plot the H1(Ω0)-error
versus the number of degrees of freedom (DOFs), obtained with an adaptive procedure guided
by the newly proposed estimators taking α = 1

2 ; and a1 = 105 and a2 = 10−4 in the weights
ω1 and ω2 for LWE, respectively; and also by the estimators proposed by Liao-Nochetto (LNE)

with d = 0.25, by Demlow (DE) with d = 0.25, p = 5 and ζ = 1
2d
− 1

2
− 1
p , and the (global)

H1
α(Ω)-estimators from (13), with α = 1

2 . The new proposal behaves a bit better than the one
by Liao-Nochetto and is very similar to the one by Demlow.

Figure 2: Meshes after 5, 10, 15, 20, 25 and 30 iterations of the adaptive algorithm guided
by the H1(Ω, ω1)-estimators (LWE). They have 345, 486, 1052, 3523, 19715 and 71403 degrees
of freedom, respectively. It is worth noticing how the refinement concentrates around x0, the
reentrant corner and the region of interest Ω0.
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Figure 3: Local error versus DOFS for the discontinuous coefficient examples. The situation
is similar to the one depicted for the L-shaped domain. Our approach is a bit better than the
one by Liao and Nochetto (LNE) and very similar to the one by Demlow (DE). We recall that
our estimators are indeed an upper bound for the error, but there is no rigorous proof (yet)
that the others bound the local error, due to the lack of a corresponding regularity result for
the duality approach.

The constants take the values ρ = 0.785398163397448, γ = 0.25, σ = −5.49778714378214 in the
first case and ρ = 0.785398163397448, γ = 0.1, σ = −14.9225651045515 in the second. These
solutions have a singularity like |x|0.25 and |x|0.1, respectively, around the origin.

The estimators from [LN03, Dem10], which need a duality argument for the lower order error,
do not carry over immediately to this situation due to the lack of corresponding regularity results
with discontinuous coefficients. In order to make a comparison, we assume that the upper bound
for the Liao-Nochetto estimators (LNE) holds with

σ−β(x) =
(
|x|2 + h(x)2

)−β/2
,

where β = 1 − γ, and for the Demlow estimator (DE), we assume the upper bound holds for
p = 9 in the first case and p = 21 in the second case (p = d 2

γ e).
We believe this is reasonable under the assumption that the precise singularity |x|γ is the

worst one for such coefficients. The chosen values of p satisfy that the exact solution u belongs
to W 2,p′(Ω) with 1/p + 1/p′ = 1. However, we emphasize that the equivalences between error
and estimator for the Liao-Nochetto and Demlow estimators have not been rigorously proved,
we infer the possible form of the estimators by analogy after looking at the worst singularity.

In order to compare the behavior of our method with those of Liao-Nochetto and Demlow
we plot in Figure 3 the local error (i.e., ‖u − U‖H1(Ω0)) versus the number of DOFs. For the
first case (left), we have taken a1 = 104 and a2 = 10−4 in the weights ω1 and ω2 for LWE,

respectively; d = 0.25 for LNE; and d = 0.125, p = 9 and ζ = 1
4d
− 1

2
− 1
p for DE. For the second

case (right), we have considered a1 = 105 and a2 = 10−4 in the weights ω1 and ω2 for LWE,

respectively; d = 0.75 for LNE; and d = 0.125, p = 21 and ζ = 1
4d
− 1

2
− 1
p for DE. We have also

considered the algorithm guided by the standard global H1(Ω)-estimators.
A sequence of meshes for the more singular case is shown in Figure 4.
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Figure 4: Meshes after 10, 20 and 30 iterations of the adaptive algorithm guided by the
H1(Ω, ω1)-estimators (LWE) for the more singular case.

4.3 Diffusion-advection-reaction with a point source

We end this section by showing how the adaptive method behaves on a diffusion-advection-
reaction equation. This is another case where the duality theory fails and our approach provides
a simple a posteriori estimator for the local error, by just using an appropriate weight. We
consider the equation

−0.02∆u+

[
2

sin(5x1)

]
· ∇u+ 0.1u = δ(0.2,0.4) in Ω = (0, 3)× (0, 1),

u = 0 on ∂Ω ∩ {x1 < 3},
∂u

∂n
= 0 on ∂Ω ∩ {x1 = 3},

and the region of interest is Ω0 = (0, 3)× (0, 0.25). An approximate solution obtained with an
adaptive method tailored to the Wα error has been presented in [AGM14]. We now present the
sequence of meshes (Figure 5) obtained by the new localized weighted estimators (LWE) taking
α = 1

2 and a1 = 105 in the definition of the weight ω1. Notice that the refinement focuses on the
region of interest Ω0 which is now a narrow band at the bottom of the domain. This emulates
the situation where there is a pollutant discharge in a river or canal, and we are interested in
the amount of pollutant at the coast.
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