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Abstract

Several generalizations of the traditional Tikhonov-Phillips regularization method have
been proposed during the last two decades. Many of these generalizations are based upon
inducing stability throughout the use of different penalizers which allow the capturing of
diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). How-
ever, in some problems in which it is known that the regularity of the exact solution is
heterogeneous and/or anisotropic, it is reasonable to think that a much better option
could be the simultaneous use of two or more penalizers of different nature. Such is the
case, for instance, in some image restoration problems in which preservation of edges,
borders or discontinuities is an important matter. In this work we present some results
on the simultaneous use of penalizers of L2 and of bounded variation (BV) type. For par-
ticular cases, existence and uniqueness results are proved. Open problems are discussed
and results to signal restoration problems are presented.

1 Introduction and preliminaries

For our general setting we consider the problem of finding u in an equation of the form

Tu = v, (1)

where T : X → Y is a bounded linear operator between two infinite dimensional Hilbert spaces
X and Y , the range of T is non-closed and v is the data, which is supposed to be known,
perhaps with a certain degree of error. In the sequel and unless otherwise specified, the space
X will be L2(Ω) where Ω ⊂ R

n is a bounded open convex set with Lipschitz boundary. It is well
known that under these hypotheses problem (1) is ill-posed in the sense of Hadamard ([8]) and
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†Instituto de Matemática Aplicada del Litoral, IMAL, CONICET-UNL, Güemes 3450, S3000GLN, Santa
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it must be regularized before any attempt to approximate its solutions is made ([7]). The most
usual way of regularizing a problem is by means of the use of the Tikhonov-Phillips regular-
ization method whose general formulation can be given within the context of an unconstrained
optimization problem. In fact, given an appropriate penalizer W (u) with domain D ⊂ X , the
regularized solution obtained by the Tikhonov-Phillips method and such a penalizer, is the
minimizer uα, over D, of the functional

Jα,W (u) = ‖Tu− v‖2 + αW (u), (2)

where α is a positive constant called regularization parameter. For general penalizers W ,
sufficient conditions guaranteeing existence, uniqueness and weak and strong stability of the
minimizers under different types of perturbations where found in [11].

Each choice of an appropriate penalizer W originates a different regularization method
producing a particular regularized solution possessing particular properties. Thus, for instance,
the choice of W (u) = ‖u‖2

L2(Ω)
gives raise to the classical Tikhonov-Phillips method of order

zero producing always smooth regularized approximations which approximate, as α → 0+, the
best approximate solution (i.e. the least squares solution of minimum norm) of problem (1)
(see [7]) while for W (u) = ‖|∇u| ‖2

L2(Ω)
the order-one Tikhonov-Phillips method is obtained.

Similarly, the choice of W (u) = ‖u‖
BV(Ω)

(where ‖·‖
BV

denotes the total variation norm) or
W (u) = ‖|∇u| ‖

L1(Ω)
, result in the so called “bounded variation regularization methods” ([1],

[12]). The use of these penalizers is appropriate when preserving discontinuities or edges is an
important matter. The method, however, has as a drawback that it tends to produce piecewise
constant approximations and therefore, it will most likely be inappropriate in regions where
the exact solution is smooth ([5]) producing the so called “staircasing effect”.

In certain types of problems, particularly in those in which it is known that the regularity of
the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that using and
spatially adapting two or more penalizers of different nature could be more convenient. During
the last 15 years several regularization methods have been developed in light of this reasoning.
Thus, for instance, in 1997 Blomgren et al. ([4]) proposed the use of the following penalizer,
by using variable Lp spaces:

W (u) =

∫

Ω

|∇u|p(|∇u|)dx, (3)

where lim
u→0+

p(u) = 2, lim
u→∞

p(u) = 1 and p is a decreasing function. Thus, in regions where the

modulus of the gradient of u is small the penalizer is approximately equal to ‖|∇u|‖2L2(Ω) cor-
responding to a Tikhonov-Phillips method of order one (appropriate for restoration in smooth
regions). On the other hand, when the modulus of the gradient of u is large, the penalizer
resembles the bounded variation seminorm ‖|∇u|‖L1(Ω), whose use, as mentioned earlier, is
highly appropriate for border detection purposes. Although this model for W is quite reason-
able, proving basic properties of the corresponding generalized Tikhonov-Phillips functional
turns out to be quite difficult. A different way of combining these two methods was proposed
by Chambolle and Lions ([5]). They suggested the use of a thresholded penalizer of the form:

Wβ(u) =

∫

|∇u|≤β

|∇u|2 dx+

∫

|∇u|>β

|∇u| dx,

where β > 0 is a prescribed threshold parameter. Thus, in regions where borders are more
likely to be present (|∇u| > β), penalization is made with the bounded variation seminorm
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while a standard order-one Tikhonov-Phillips method is used otherwise. This model was shown
to be successful in restoring images possessing regions with homogeneous intensity separated
by borders. However, in the case of images with non-uniform or highly degraded intensities,
the model is extremely sensitive to the choice of the threshold parameter β. More recently,
penalizers of the form

W (u) =

∫

Ω

|∇u|p(x)dx, (4)

for certain functions p with range in [1, 2], were studied in [6] and [10]. It is timely to point out
here that all previously mentioned results work only for the case of denoising, i.e. for the case
T = id.

In this work we propose the use of a model for general restoration problems, which combines,
in an appropriate way, the penalizers corresponding to a zero-order Tikhonov-Phillips method
and the bounded variation seminorm. Although several mathematical issues for this model
still remain open, its use in some signal and image restoration problems has already proved to
be very promising. The purpose of this article is to introduce the model, show mathematical
results regarding the existence of the corresponding regularized solutions, and present some
results of its application to signal restoration.

The following Theorem, whose proof can be found in [1] (Theorem 3.1), guarantees the
well-posedness of the unconstrained minimization problem

u∗ = argmin
u∈Lp(Ω)

J(u). (5)

Theorem 1.1. Let J be a BV -coercive functional defined on Lp(Ω). If 1 ≤ p < n
n−1

and J is
lower semicontinuous, then problem (5) has a solution. If p = n

n−1
, n ≥ 2 and in addition J is

weakly lower semicontinuous, then a solutions also exists. In either case, the solution is unique
if J is strictly convex.

The following theorem, whose proof can also be found in [1] (Theorem 4.1), is very important
for the existence and uniqueness of minimizers of functionals of the form

J(u) = ‖Tu− v‖2 + αJ0(u), (6)

where α > 0 and J0(u) denotes the bounded variation seminorm given by

J0(u) = sup
~ν∈V

∫

Ω

−u div~ν dx, (7)

with V .
= {~ν : Ω → R

n such that ~ν ∈ C1
0 (Ω) and |~ν(x)| ≤ 1 ∀ x ∈ Ω}.

Theorem 1.2. Suppose that p satisfies the restrictions of Theorem 1.1 and TχΩ 6= 0. Then
J(·) defined by (6) is BV -coercive.

Note here that (6) is a particular case of (2) with W (u) = J0(u). The following theorem,
whose proof can be found in [11], gives conditions guaranteeing existence and uniqueness of
minimizers of (2) for general penalizers W (u). This theorem will also be very important for
our main results in the next section.

Theorem 1.3. Let X , Y be normed vector spaces, T ∈ L(X ,Y), v ∈ Y , D ⊂ X a convex set and
W : D −→ R a functional bounded from below, W -subsequentially weakly lower semicontinuous,
and such that W -bounded sets are relatively weakly compact in X . More precisely, suppose that
W satisfies the following hypotheses:
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• (H1): ∃ γ ≥ 0 such that W (u) ≥ −γ ∀ u ∈ D.

• (H2): for every W -bounded sequence {un} ⊂ D such that un
w→ u ∈ D, there exists a

subsequence {unj
} ⊂ {un} such that W (u) ≤ lim infj→∞W (unj

).

• (H3): for every W -bounded sequence {un} ⊂ D there exist a subsequence {unj
} ⊂ {un}

and u ∈ D such that unj

w→ u.

Then the functional JW,α(u)
.
= ‖Tu− v‖2 + αW (u) has a global minimizer on D. If moreover

W is convex and T is injective or if W is strictly convex, then such a minimizer is unique.

Proof. See Theorem 2.5 in [11].

2 Main results

In this section we will state and prove our main results concerning existence and uniqueness
of minimizers of particular generalized Tikhonov-Phillips functionals with combined spatially-
varying L2-BV penalizers. In what follows M(Ω) shall denote the set of all real valued mea-

surable functions defined on Ω and M̂(Ω) the subset of M(Ω) formed by those functions with
values in [0, 1].

Definition 2.1. Given θ ∈ M̂(Ω) we define the functional W0,θ(u) with values on the extended
reals by

W0,θ(u)
.
= sup

~ν∈Vθ

∫

Ω

−u div(θ~ν) dx, u ∈ M(Ω) (8)

where Vθ

.
= {~ν : Ω → R

n such that θ~ν ∈ C1
0 (Ω) and |~ν(x)| ≤ 1 ∀ x ∈ Ω}.

Lemma 2.2. If u and θ ∈ C1(Ω) then W0,θ(u) = ‖θ |∇u| ‖L1(Ω).

Proof. Let u ∈ C1(Ω). For all ~ν ∈ Vθ it follows easily that
∫

Ω

−u div(θ~ν) dx =

∫

Ω

∇u · θ~ν dx−
∫

δΩ

(uθ~ν · ~n) dS

=

∫

Ω

∇u · θ~ν dx (since θ~ν|δΩ = 0)

≤
∫

Ω

|θ∇u| |~ν| dx

≤
∫

Ω

|θ∇u| dx (since |~ν(x)| ≤ 1), (9)

where ~n denotes the outward unit normal to δΩ. Taking supremum over ~ν ∈ Vθ it follows that

W0,θ(u) ≤ ‖θ |∇u| ‖L1(Ω).

For the opposite inequality, define ~ν∗(x)
.
=

{
∇u(x)
|∇u(x)| , if |∇u(x)| 6= 0,

0, if |∇u(x)| = 0,
. Then one has that

|~ν∗(x)| ≤ 1 ∀ x ∈ Ω. Also, ∫

Ω

(∇u · θ~ν∗) dx =

∫

Ω

|θ∇u| dx.
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Since u and θ are in C1(Ω), by convolving ~ν∗ with an appropriately chosen function ϕ ∈
C∞

0
(Ω,Rn), we can obtain a function ~ν ∈ Vθ ∩ C∞

0
(Ω,Rn) for which the left hand side of (9) is

arbitrarily close to

∫

Ω

|θ∇u| dx. Then taking supremum over ~ν ∈ Vθ we have that

W0,θ(u) ≥ ‖θ |∇u| ‖L1(Ω).

Hence W0,θ(u) = ‖θ |∇u| ‖L1(Ω), as we wanted to prove.

Observation: From de density of C1(Ω) in W 1,1(Ω) it follows that Lemma 2.2 holds for every u

and θ in W 1,1(Ω).

Remark 2.3. For any θ ∈ M̂(Ω), it follows easily that

W0,θ(u) ≤ J0(u), ∀ u ∈ M(Ω). (10)

In fact, for any ~ν ∈ Vθ and for any u ∈ M(Ω) we have that

∫

Ω

−u div(θ~ν) dx ≤ sup
~ν∈V

∫

Ω

−u div~ν dx (11)

= J0(u),

where inequality (11) follows from the fact that θ~ν ∈ V (since |θ(x)| ≤ 1 ∀x ∈ Ω). By taking
supremum for ~ν ∈ Vθ inequality (10) follows.

Although inequality (10) is important by itself since it relates the functionals W0,θ and J0,
in order to be able to use the known coercitivity properties of J0 (see [1]), an inequality of the
opposite type is highly desired. That is, we would like to show that, under certain conditions
on θ(·), there exists a constant C = C(θ) such that W0,θ(u) ≥ CJ0(u) for all u ∈ M(Ω). The
following theorem provides sufficient conditions on θ assuring such an inequality.

Theorem 2.4. Let θ ∈ M̂(Ω) be such that 1
θ
∈ L∞(Ω) and let J0, W0,θ be the functionals

defined in (7) and (8), respectively. Then J0(u) ≤ ‖1
θ
‖L∞(Ω) W0,θ(u) for all u ∈ M(Ω).

Proof. Let u ∈ M(Ω) and Kθ

.
= ‖1

θ
‖L∞(Ω). Then for all ~ν ∈ V

∫

Ω

−u div~ν dx = Kθ

∫

Ω

−u div

(
θ~ν

Kθθ

)
dx

≤ Kθ sup
~ω∈Vθ

∫

Ω

−u div (θ ~ω) dx

= Kθ W 0,θ(u),

where the last inequality follows from the fact that ~ν
Kθ θ

∈ Vθ since Kθ ≥ 1, |Kθθ(x)| ≥ 1 ∀ x ∈ Ω

and ~ν ∈ V. Then, taking supremum for ~ν ∈ V we conclude that J0(u) ≤ Kθ W0,θ(u).

The following lemma will be of fundamental importance for proving several of the upcoming
results.

Lemma 2.5. The functional W0,θ defined by (8) is weakly lower semicontinuous with respect
to the Lp topology, ∀ p ∈ [1,∞).
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Proof. Let p ∈ [1,∞), {un} ⊂ Lp(Ω) and u ∈ Lp(Ω) be such that un
w→ u. Let ~ν∗ ∈ Vθ and q

the conjugate dual of p. Since θ~ν∗ ∈ C1
0
(Ω), it follows that div(θ~ν∗) is uniformly bounded on

Ω and therefore, div(θ~ν∗) ∈ L∞(Ω) ⊂ Lq(Ω). Then, from the weak convergence of un it follows

that lim
n→∞

∫
Ω
−un div(θ~ν∗) dx =

∫

Ω

−u div(θ~ν∗) dx.

Hence

∫

Ω

−u div(θ~ν∗) dx = lim
n→∞

∫

Ω

−un div(θ~ν∗) dx ≤ lim inf
n→∞

sup
~ν∈Vθ

∫

Ω

−un div(θ~ν) dx =

lim inf
n→∞

W0,θ(un). Thus ∀ ~ν∗ ∈ Vθ

∫

Ω

−u div(θ~ν∗) dx ≤ lim inf
n→∞

W0,θ(un).

Taking supremum over all ~ν∗ ∈ Vθ it follows that W0,θ(u) ≤ lim inf
n→∞

W0,θ(un).

We are now ready to present several results on existence and uniqueness of minimizers of
generalized Tikhonov-Phillips functionals with penalizers involving spatially varying combina-
tions of the L2-norm and of the functional W0,θ, under different hypotheses on the function
θ.

Theorem 2.6. Let Ω ⊂ R
n be a bounded open convex set with Lipschitz boundary, X = L2(Ω),

Y a normed vector space, T ∈ L(X ,Y), v ∈ Y, α1, α2 positive constants, θ ∈ M̂(Ω) and Fθ the
functional defined by

Fθ(u)
.
= ‖Tu− v‖2Y + α1‖

√
1− θ u‖2

L2(Ω)
+ α2 W0,θ(u), u ∈ D .

= L2(Ω). (12)

If there exists ε2 ∈ R, such that θ(x) ≤ ε2 < 1 for a.e. x ∈ Ω, then the functional (12) has a
unique global minimizer u∗ ∈ L2(Ω). If moreover there exists ε1 ∈ R such that 0 < ε1 ≤ θ(x)
for a.e. x ∈ Ω, then u∗ ∈ BV (Ω).

Proof. By virtue of Theorem 1.3 it is sufficient to show that the functional

W (u)
.
= α1‖

√
1− θ u‖2

L2(Ω)
+ α2 W0,θ(u), u ∈ L2(Ω)

satisfies hypotheses (H1), (H2) and (H3). Clearly (H1) holds with γ = 0.
To prove (H2 ) let {un} ⊂ L2(Ω) such that un

w−→ u ∈ L2(Ω) and W (un) ≤ c1 < ∞.
We want to show that W (u) ≤ lim inf

n→∞
W (un). Since

√
1− θ ∈ L∞(Ω) one has

√
1− θ un

w−→
√
1− θ u.
The condition θ(x) ≤ ε2 < 1 for a.e. x ∈ Ω, clearly implies that ‖

√
1− θ · ‖L2(Ω) is a norm.

Then, from the weak lower semicontinuity of ‖
√
1− θ · ‖2

L2(Ω)
, it follows that

‖
√
1− θ u‖2L2(Ω) ≤ lim inf

n→∞
‖
√
1− θ un‖2L2(Ω). (13)

On the other hand, from the weak lower semicontinuity of W0,θ in L2(Ω) (see Lemma 2.5) it
follows that

W0,θ(u) ≤ lim inf
n→∞

W0,θ(un). (14)
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From (13) and (14) we then conclude that

W (u) = α1‖
√
1− θ u‖2

L2(Ω)
+ α2 W0,θ(u)

≤ α1 lim inf
n→∞

‖
√
1− θ un‖2L2(Ω) + α2 lim inf

n→∞
W0,θ(un)

≤ lim inf
n→∞

(
α1‖

√
1− θ un‖2L2(Ω) + α2W0,θ(un)

)

= lim inf
n→∞

W (un),

what proves (H2 ).
To prove (H3 ) let {un} ⊂ L2(Ω) be such that W (un) ≤ c1 < ∞, ∀n. We want to show

that there exist {unj
} ⊂ {un} and u ∈ L2(Ω) such that unj

w−→ u. For this note that

(1− ε2)‖un‖2L2(Ω) ≤ ‖
√
1− θ un‖2L2(Ω) ≤ W (un) ≤ c1. (15)

Thus ‖un‖L2(Ω) is uniformly bounded and therefore there exist {unj
} ⊂ {un} and u∗ ∈ L2(Ω)

such that unj

w−→ u∗. Hence, by Theorem 1.3, the functional Fθ(u) given by (12) has a global
minimizer u∗ ∈ L2(Ω). The condition θ(x) ≤ ε2 < 1 for a.e. x ∈ Ω clearly implies the strict
convexity of Fθ and therefore the uniqueness of such a global minimizer.

To prove the second part of the theorem, assume further that there exists ε1 > 0 such that
θ(x) ≥ ε1 for a.e. x ∈ Ω. Following the proof of Theorem 5.1 in [11], it suffices to show that
under this additional hypothesis the weak limit u in (H3) above belongs to BV (Ω). For this
note that from (15) it follows that there exist c2 < ∞ such that

‖un‖L1(Ω) ≤ c2 ∀ n. (16)

Also, by Theorem 2.4 W0,θ(u) ≥ ε1J0(u) ∀ u ∈ M(Ω). This, together with (16) implies that

‖un‖BV (Ω) = ‖un‖L1(Ω) + J0(un) ≤ c2 +
W0,θ(un)

ε1
≤ c3 < ∞ ∀n,

where the previous to last inequality follows from the uniform boundedness of W0,θ(un), which,
in turn, follows from the uniform boundedness of W (un). Hence the fact that the weak limit
in (H3 ) is in BV (Ω) follows from the compact embedding of BV (Ω) in L2(Ω). This result is
an extension of the Rellich-Kondrachov Theorem which can be found, for instance, in [2] and
[3].

Remark 2.7. Note that if θ(x) = 0 ∀ x ∈ Ω, then W (u) = ‖u‖2
L2(Ω) and Fθ as defined in (12) is

the classical Tikhonov-Phillips functional of order zero. On the other hand, if θ(x) = 1 ∀ x ∈ Ω
then W (u) = J0(u) and Fθ has a global minimizer provided that TχΩ 6= 0. If moreover T

is injective then such a global minimizer is unique. All these facts follow immediately from
Theorems 3.1 and 4.1 in [1].

Theorem 2.8. Let Ω ⊂ R
n be a bounded open convex set with Lipschitz boundary, X = L2(Ω),

Y a normed vector space, T ∈ L(X ,Y), v ∈ Y, α1, α2 positive constants and θ ∈ M̂(Ω) such
that 1

1−θ
∈ L1(Ω) and 1

θ
∈ L∞(Ω). Then the functional (12) has a unique global minimizer

u∗ ∈ BV (Ω).
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Proof. Let us consider the functional

W (u)
.
= α1‖

√
1− θ u‖2

L2(Ω)
+ α2 W0,θ(u), u ∈ L2(Ω).

By virtue of Theorems 1.3 and 2.6 and the compact embedding of BV (Ω) in L2(Ω), it suffices
to show that W (·) satisfies (H1) and (H2) and that every W -bounded sequence is also BV -
bounded. Clearly W (·) satisfies (H1) with γ = 0. That it satisfies (H2) follows immediately
from the fact that the condition 1

1−θ
∈ L1(Ω) implies that ‖

√
1− θ · ‖L2(Ω) is a norm.

Now, let {un} ⊂ L2(Ω) be a W -bounded sequence, i.e. such that W (un) ≤ c < ∞, ∀n. We
will show that {un} is BV -bounded. Since W (un) is uniformly bounded, there exist K < ∞
such that ‖

√
1− θ un‖L2(Ω) ≤ K ∀n. From this and the fact that 1

1−θ
∈ L1(Ω) it follows that

‖un‖L1(Ω) =

∫

Ω

1√
1− θ

√
1− θ |un| dx

≤
(∫

Ω

1

1− θ
dx

) 1
2
(∫

Ω

(1− θ) u2
n dx

) 1
2

=

∥∥∥∥
1

1− θ

∥∥∥∥
1
2

L1(Ω)

‖
√
1− θ un‖L2(Ω)

≤ K

∥∥∥∥
1

1− θ

∥∥∥∥
1
2

L1(Ω)

< ∞ ∀n. (17)

On the other hand from Theorem 2.4 J0(u) ≤ W0,θ(u)
∥∥1
θ

∥∥
L∞(Ω)

∀ u ∈ L2(Ω). Since 1
θ
∈

L∞(Ω) and W0,θ(un) is uniformly bounded, it then follows that there exists C < ∞ such that

J0(un) ≤ C ∀n. (18)

From (17) and (18) it follows that

‖un‖BV (Ω) = ‖un‖L1(Ω) + J0(un) ≤ K

∥∥∥∥
1

1− θ

∥∥∥∥
1
2

L1(Ω)

+ C < ∞ ∀n.

Hence {un} is BV -bounded. The existence of a global minimizer of functional (12) belonging
to BV (Ω) then follows. Finally note that the condition 1

1−θ
∈ L1(Ω) implies the strict convexity

of Fθ and therefore the uniqueness of the global minimizer.

Remark 2.9. Note that the condition 1
1−θ

∈ L1(Ω) in Theorem 2.8 is weaker than the condition
θ(x) ≤ ε2 < 1 for a.e. x ∈ Ω of Theorem 2.6. While the latter suffices to guarantee the existence
of a global minimizer in L2(Ω), the former does not. However this weaker condition 1

1−θ
∈ L1(Ω)

together with the condition 1
θ
∈ L∞(Ω) are enough for guaranteing not only the existence of a

unique global minimizer, but also the fact that such a minimizer belongs to BV (Ω).

It is timely to note that in both Theorems 2.6 and 2.8, the function θ cannot assume the
extreme values 0 and 1 on a set of positive measure. In some cases a pure BV regularization in
some regions and a pure L2 regularization in others may be desired, and therefore that restraint
on the function θ will turn out to be inappropriate. In the next three theorems we introduce
different conditions which allow the function θ to take the extreme values on sets of positive
measure.
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Theorem 2.10. Let Ω ⊂ R
n be a bounded open convex set with Lipschitz boundary, X = L2(Ω),

Y a normed vector space, T ∈ L(X ,Y), v ∈ Y, α1, α2 positive constants, θ ∈ M̂(Ω) and
Ω0

.
= {x ∈ Ω such that θ(x) = 0}. If 1

θ
∈ L∞(Ω c

0
) and 1

1−θ
∈ L1(Ω c

0
) then functional (12) has a

unique global minimizer u∗ ∈ L2(Ω) ∩BV (Ω c

0
).

Proof. Under the hypotheses of the theorem the functional W (u) can be written as

W (u) = α1‖u‖2L2(Ω 0)
+ α1‖

√
1− θ u‖2

L2(Ω c
0)
+ α2 sup

~ν∈Vθ

∫

Ω c
0

−u|Ω c
0
div(θ~ν) dx. (19)

Just like in Theorem 2.8 it follows easily that W (·) satisfies (H1) and (H2).
Let now {un} ⊂ L2(Ω) be a W -bounded sequence. From (19) we conclude that there exist

u∗
1 ∈ L2(Ω0) and a subsequence {unj

} ⊂ {un} such that unj
|Ω0

w−L2(Ω0)−→ u∗
1. On the other hand

from the uniform boundedness of sup~ν∈Vθ

∫
Ω c

0
−unj

|Ω c
0
div(θ~ν) dx, by using Theorem 2.4 with Ω

replaced by Ω c

0, it follows that there exists a constant C ≤ ∞ such that J0(unj
|Ω c

0
) ≤ C for

all nj . Also, from (19) and the hypothesis that 1
1−θ

∈ L1(Ω c

0
), it can be easily proved that the

sequence {un} is uniformly bounded in L1(Ω c

0
). Hence

{
unj

|Ω c
0

}
is uniformly BV -bounded. By

using the compact embedding of BV (Ω c

0) in L2(Ω c

0) it follows that there exist a subsequence

{unjk
} of {unj

} and u∗
2 ∈ BV (Ω c

0) such that unjk

w−L2(Ω c
0)−→ u∗

2 .

Let us define now

û1(x)
.
=

{
u∗

1(x), if x ∈ Ω 0,
0, if x ∈ Ω c

0
,

û2(x)
.
=

{
u∗

2(x), if x ∈ Ω c

0,
0, if x ∈ Ω 0,

and u∗ .
= û1 + û2. Then one has that u∗ ∈ L2(Ω), u∗|Ω c

0
= u∗

2 ∈ BV (Ω c

0
) and unjk

w−L2(Ω)−→ u∗.
The existence of a global minimizer of functional (12) then follows immediately from Theo-

rem 1.3. Uniqueness is a consequence of the fact that the hypothesis 1
1−θ

∈ L1(Ω c

0) implies that

‖
√
1− θ · ‖L2(Ω c

0)
is a norm.

Theorem 2.11. Let n ≤ 2, Ω ⊂ R
n be a bounded open convex set with Lipschitz boundary,

X = L2(Ω), Y a normed vector space, T ∈ L(X ,Y), v ∈ Y, α1, α2 positive constants. Let

θ ∈ M̂(Ω) and Ω1

.
= {x ∈ Ω such that θ(x) = 1}. If 1

θ
∈ L∞(Ω c

1
), 1

1−θ
∈ L1(Ω c

1
) and Tχ

Ω
6= 0,

then the functional (12) has a global minimizer u∗ ∈ L2(Ω) ∩ BV (Ωc

1
). If moreover N (T ) does

not contain functions vanishing on Ω1, i.e. if Tu = 0 implies u|Ω1
6= 0, then such a global

minimizer is unique.

Proof. We will prove that under the hypotheses of the theorem, the functional Fθ(·) defined by
(12) is weakly lower semicontinuous with respect to the L2(Ω) topology and BV -coercive.

First note that under the hypotheses of the theorem we can write

Fθ(u) = ‖Tu− v‖2Y + α1‖
√
1− θ u‖2

L2(Ω c
1)
+ α2 W0,θ(u). (20)

Since 1
1−θ

∈ L1(Ω c

1), it follows that ‖
√
1− θ · ‖L2(Ωc

1)
is a norm in L2(Ωc

1) and therefore it is
weakly lower semicontinuous. The weak lower semicontinuity of Fθ(·) then follows immediately
from this fact, from Lemma 2.5 and from the weak lower semicontinuity of the norm in Y .
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For the BV -coercitivity, note that

‖Tu− v‖2 + α2J0(u) ≤ ‖Tu− v‖2 + α2

∥∥∥∥
1

θ

∥∥∥∥
L∞(Ωc

1)

W0,θ(u) (from Theorem (2.4))

≤ ‖Tu− v‖2 + α2

∥∥∥∥
1

θ

∥∥∥∥
L∞(Ωc

1)

W0,θ(u) + α1‖
√
1− θ u‖2

L2(Ωc
1)

≤
∥∥∥∥
1

θ

∥∥∥∥
L∞(Ωc

1)

Fθ(u) (since
∥∥θ−1

∥∥
L∞(Ωc

1)
≥ 1). (21)

Now, since Tχ
Ω
6= 0, by Theorem 1.2 the functional J(u)

.
= ‖Tu−v‖2+α2J0(u) is BV -coercive

on L2(Ω). From this and inequality (21) it follows that Fθ(·) is also BV -coercive. The existence
of a global minimizer u∗ ∈ L2(Ω) then follows from Theorem 1.1. Since Fθ(u

∗) < ∞ it follows
that both ‖u∗‖L1(Ωc

1)
and W0,θ(u

∗) are finite. The fact that u∗ is of bounded variation on Ωc
1 then

follows from Theorem 2.4. Finally, if N (T ) does not contain functions vanishing on Ω1 then it
follows easily that Fθ(u) is strictly convex and therefore such a global minimizer is unique.

Theorem 2.12. Let Ω ⊂ R
n, n ≤ 2 be a bounded open convex set with Lipschitz boundary,

X = L2(Ω), Y a normed vector space, T ∈ L(X ,Y), v ∈ Y, α1, α2 positive constants. Let

θ ∈ M̂(Ω), Ω0

.
= {x ∈ Ω such that θ(x) = 0} and Ω1

.
= {x ∈ Ω such that θ(x) = 1}. If 1

θ
∈

L∞(Ω c

0
), 1

1−θ
∈ L∞(Ω c

1
) and N (T ) does not contain functions vanishing on Ω1, i.e. if Tu = 0

implies u|Ω1
6= 0, then functional (12) has a unique global minimizer u∗ ∈ L2(Ω)∩BV (Ωc

1
∩Ωc

0
).

Proof. For the existence of a global minimizer it is sufficient to prove that the functional Fθ

defined by (20) is weakly lower semicontinuos and L2(Ω)-coercive. For this, note that

Fθ(u) = ‖Tu− v‖2Y + α1‖
√
1− θ u‖2

L2(Ω c
1)
+ α2 sup

~ν∈Vθ

∫

Ω c
0

−u div(θ~ν) dx. (22)

The weak lower semicontinuity of Fθ(·) follows from Lemma 2.5 and the weak lower semi-
continuity of the norms in Y and ‖

√
1− θ · ‖L2(Ωc

1)
.

We shall now prove that Fθ(·) is L2(Ω)-coercive. For that, assume {un} is a sequence
in L2(Ω) such that ‖un‖L2(Ω) → ∞. Then either ‖un‖L2(Ωc

1)
→ ∞ or ‖un‖L2(Ω1)

→ ∞. If

‖un‖L2(Ωc
1)

→ ∞, then the hypothesis 1
1−θ

∈ L∞(Ω c

1) implies that ‖
√
1− θ u‖2

L2(Ω c
1)

→ ∞ and

therefore Fθ(un) → ∞. Suppose now that ‖un‖L2(Ω1)
→ ∞ and without loss of generality assume

that ‖un‖L2(Ωc
1)
≤ C < ∞. Then due to the compact embedding BV (Ω1) →֒ L2(Ω1) it follows

that ‖un‖BV (Ω1)
→ ∞. Since N (T ) does not contain functions vanishing on Ω1, it follows that

Tχ
Ω1

6= 0. Then, by Theorem 1.2, the functional ‖Tun − v‖2Y + α2J
Ω1
0 (un) is BV -coercive; i.e:

‖Tun − v‖2Y + α2J
Ω1
0
(un) → ∞. (23)

Now clearly

‖Tun − v‖2Y + α2J
Ω1
0
(un) ≤ ‖Tun − v‖2Y + α2 sup

~ν∈Vθ

∫

Ω c
0

−un div(θ~ν) dx

≤ Fθ(un).

(24)

From (23) and (24) it follows that Fθ(un) → ∞. Hence Fθ is L2(Ω)-coercive. The existence of
a global minimizer then follows. Finally, the hypothesis that N (T ) does not contain functions
vanishing on Ω1 also implies that Fθ(u) is strictly convex and therefore such a global minimizer
is unique.
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3 Signal restoration with L2-BV regularization

The purpose of this section is to show some applications of the regularization method developed
in the previous section consisting in the simultaneous use of penalizers of L2 and of bounded-
variation (BV) type to signal restoration problems.

A basic mathematical model for signal blurring is given by convolution, as a Fredholm
integral equation of first kind:

v(t) =

∫ 1

0

k(t, s)u(t)ds, (25)

where k(t, s) is the blurring kernel or point spread function, u is the exact (original) signal
and v is the blurred signal. For the examples that follow we took a Gaussian blurring kernel,

i.e. k(t, s) = 1√
2πσb

exp
(
− (t−s)2

2σ2
b

)
, with σb > 0. Equation (25) was discretized in the usual way

(using collocation and quadrature), resulting in a discrete model of the form

Af = g, (26)

where A is a (n + 1)× (n+ 1) matrix, f, g ∈ R
n+1 (fj = u(tj), gj = v(tj), tj =

j

n
, 0 ≤ j ≤ n).

We took n = 130 and σb = 0.05. The data g was contaminated with a 1% zero-mean Gaussian
additive noise (i.e. standard deviation equal to 1% of the range of g).

Example 3.1. For this example, the original signal (unknown in real life problems) and
the blurred noisy signal which constitutes the data of the inverse problem for this example are
shown in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Figure 1: Original signal (- -) and blurred noisy signal (—).

Figure 2 shows the regularized solutions obtained with the classical Tikhonov-Phillips
method of order zero (left) and with penalizer associated to the bounded variation seminorm
J0 (right). As expected, the regularized solution obtained with the J0 penalizer is significantly
better than the one obtained with the classical Tikhonov-Phillips method near jumps and in
regions where the exact solution is piecewise constant. The opposite happens where the exact
solution is smooth.
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Figure 2: Original signal (- -) and regularized solutions (—) obtained with Tikhonov-Phillips
(left) and bounded variation seminorm (right).

Figure 3 shows the regularized solution obtained with the combined L2−BV method (see
(12)). In this case the weight function θ(t) was chosen to be θ(t)

.
= 1 for t ∈ (0, 0.4] and θ(t)

.
= 0

for t ∈ (0.4, 1). Although this choice of θ(t) is clearly based upon “a-priori” information about
the regularity of exact solution, other reasonable choices of θ can be made by using only data-
based information. Choosing a “good” weighting function θ is a very important issue but we
shall not discuss this matter in this article. For instance, one way of constructing a reason-
able function θ is by computing the normalized (in [0, 1]) convolution of a Gaussian function
of zero mean and standard deviation σb and the modulus of the gradient of the regularized
solution obtained with a pure zero-order Tikhonov-Phillips method (see Figure 4). For this
weight function θ, the corresponding regularized solution obtained with the combined L2−BV
method is shown in Figure 5. In all cases reflexive boundary conditions were used ([9]) and the
regularization parameters were calculated using Morozov’s discrepancy principle with τ = 1.1
([7]).
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1

Figure 3: Original signal (- -) and regularized solution (—) obtained with the combined L2−BV

method and binary weight function θ.
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Figure 4: Weight function θ computed by normalizing the convolution of a Gaussian kernel and
the modulus of the gradient of the regularized solution with a pure Tikhonov-Phillips method.
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Figure 5: Original signal (- -) and regularized solution (—) obtained with the combined L2−BV

method and the data-based weight function θ showed in Fig. 4.

As it can be seen, the improvement of the result obtained with the combined L2 − BV

method and “ad-hoc” binary function θ with respect to the pure simple methods, zero-order
Tikhonov-Phillips and pure BV , is notorious. As previously mentioned however, in this case the
construction of the function θ is based on “a-priori” information about the exact solution, which
most likely will not be available in concrete real life problems. Nevertheless, the regularized
solution obtained with the data-based weight function θ shown in Figure 4 is also significantly
better than those obtained with any of the single-based penalizers. This fact is clearly and
objectively reflected by the Improved Signal-to-Noise Ratio (ISNR) defined as

ISNR = 10 log10

(
‖f − g‖2

‖f − fα‖2

)
,
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where fα is the restored signal obtained with regularization parameter α. For all the previ-
ously shown restorations, the ISNR was computed in order to have a parameter for objectively
measuring and comparing the quality of the regularized solutions (see Table 1).

Table 1: ISNR’s for Example 3.1.

Regularization Method ISNR

Tikhonov-Phillips of order zero 2.5197
Bounded variation seminorm 4.2063
Mixed L2−BV method with binary θ 5.7086
Mixed L2−BV method with zero-order Tikhonov-based θ 4.4029

Example 3.2. For this example we considered a signal which is smooth in two disjoint
intervals and it is piecewise constant in their complement, having three jumps. The signal was
blurred and noise was added just as in the previous example. The original and blurred-noisy
signal are depicted in Figure 6.
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Figure 6: Original (- -) and blurred-noisy (—) signals for Example 3.2.

Figure 7 shows the restorations obtained with the classical zero-order Tikhonov-Phillips
method (left) and BV with penalizer J0 (right).
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Figure 7: Original signal (- -) and regularized solutions (—) obtained with Tikhonov-Phillips
(top) and bounded variation seminorm (bottom).

An ad-hoc binary weight function theta for this example was defined on the interval [0, 1]
as θ(t) = χ[0.3,0.65](t). The regularized solution obtained with this weight function and the
combined L2 − BV method is shown in Figure 8. Once again, the improvement with respect
to any of the classical pure methods is clearly notorious.
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Figure 8: Original signal (- -) and regularized solution (—) obtained with the combined L2−BV

method and binary function θ.

Here also we constructed a data based weight function θ as in Example 3.1, by convolving a
Gaussian kernel with the modulus of the gradient of a a Tikhonov regularized solution and nor-
malizing the result. This weight function θ is now depicted in Figure 9, while the corresponding
restored signal is shown in Figure 10.
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Figure 9: Tikhonov-based weight function θ for Example 3.2.
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Figure 10: Original signal (- -) and regularized solution (—) obtained with the combined
L2 − BV method and function θ showed in Fig. 9.

In table 2 the values of the ISNR for the four restorations are presented. These values show
once again a significant improvement of the combined method with respect to any of the pure
single methods.

Table 2: ISNR’s for Example 3.2.

Regularization Method ISNR

Tikhonov-Phillips of order zero 2.6008
Bounded variation seminorm 2.8448
Mixed L2−BV method with binary θ 4.8969
Mixed L2−BV method with zero-order Tikhonov-based θ 4.3315
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4 Conclusions

In this article we introduced a new generalized Tikhonov-Phillips regularization method in
which the penalizer is given by a spatially varying combination of the L2 norm and of the
bounded variation seminorm. For particular cases, existence and uniqueness of global minimiz-
ers of the corresponding functionals were shown. Finally, applications of the new method to
signal restoration problem were shown.

Although these preliminary results are clearly quite promising, further research is needed.
In particular, the choice or construction of a weight function θ(t) in a somewhat optimal way
is a matter which undoubtedly deserves much further attention and study. Research in these
directions is currently under way.
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