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GRADUAL DOUBLING PROPERTY OF HUTCHINSON ORBITS

HUGO AIMAR, MARILINA CARENA, AND BIBIANA IAFFEI

Abstract. The classical self-similar fractals can be obtained as fixed points

of the iteration technique introduced by Hutchinson. The well known results
of Mosco show that typically the limit fractal equipped with the invariant

measure is a (normal) space of homogeneous type. But the doubling property

along this iteration is generally not preserved even when the starting point,
and of course the limit point, have both the doubling property. We prove that

the elements of Hutchinson orbits satisfy the doubling property except perhaps

for radii which decrease to zero as the step of the iteration grows, and in this
sense, we say that the doubling property of the limit is achieved gradually. We

use this result to prove the uniform upper doubling property of the orbits.

1. Introduction

Since the earlier works by Coifman and Guzmán in [5] and Coifman and Weiss
in [6], the harmonic analysis has a natural environment the (quasi) metric spaces
with doubling measures. There the expression space of homogeneous type for this
setting seems to be coined. Since the doubling property allows the use of Wiener
type covering lemmas, many of the basic results of harmonic analysis have been
extended to the setting of space of homogeneous type.

On the other hand, the results in [17] show that typically the limit fractal pro-
vided by the Hutchinson iteration scheme (see [12]) and equipped with the invariant
measure, is a (normal) space of homogeneous type. Some current attempts to ex-
tend notions of harmonic analysis and partial differential equations to fractals (see
[18], [14], [15]) suggest that some results of real and functional analysis on these
settings are of interest.

Since the classical self-similar fractals are actually obtained as fixed points of the
iteration technique introduced by Hutchinson, one may ask for the preservation of
the doubling property along the iteration. If this property is uniformly preserved,
one can expect that the behavior of some operators on the limit fractal could be
predicted from approximate versions defined on the simpler approximation spaces
(see [1]). But the doubling property is generally not preserved by the iteration
procedure. In [2] we prove that it may happen that no point, except for the first
and last, of the orbit generated by a contraction is a space of homogeneous type,
even when the starting point, and of course the limit point, have both the doubling
property. On the other hand, the uniqueness of the (Banach) fixed point lead us to
the same limit space no matter what is the initial space, and under the assumptions
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2 H. AIMAR, M. CARENA, AND B. IAFFEI

in [17] this limit space is doubling. Hence the question of how suddenly appears
the doubling property of the limit seems natural.

In this note we prove that, in a precise sense, the elements of Hutchinson orbits
become more and more doubling as the step of the iteration grows (Theorem 3.2),
and the doubling property of the limit, in this sense, is gradual (Proposition 3.1).
We use this result to prove the uniform upper doubling property of the orbits in
Theorem 4.1.

For the sake of notational simplicty we have assumed the same contractivity
coefficient for each one of the contractive similitudes involved. As can easily be
verified, the results in this paper still hold in the case of different coefficients.

In the first section we introduce notation and definitions, and some basic re-
sults. In Section 3 we find a gradual improvement for the doubling property of the
orbit as the iteration step increases in Theorem 3.2, the proof of which is based
on the construction of discrete approximations to the attractor. We consider the
orbits starting from a mass point space, defined by a finite family of contractive
similitudes, and we prove the uniform normality, and hence the uniform doubling
property, for the whole orbit (Lemmas 3.3 and 3.4). We also state some basic
properties of iterated function systems in Lemma 3.5. Finally, in Section 4, we
use Theorem 3.2 in order to show that the approximating sequence of spaces is a
uniform family of upper doubling spaces, in the sense of Hytönen.

2. Notation and basic results

Let us start by describing our general framework. Throughout this note, (X, d)
is a given compact metric space. Without loss of generality we shall assume that
diam(X) = 1, where diam(X) = sup{d(x, y) : x, y ∈ X}. We define an open ball
centered at x of radius r to be the set B(x, r) = {y ∈ X : d(x, y) < r}.

Let K = {K ⊆ X : K 6= ∅, K compact}. With [A]ε we shall denote the ε-
enlargement of the set A ⊆ X; i.e. [A]ε =

⋃
x∈AB(x, ε) = {y ∈ X : d(y,A) < ε}.

Here d(x,A) = inf{d(x, y) : y ∈ A}. Given A and B two sets in K the Hausdorff
distance from A to B is given by

dH(A,B) = inf{ε > 0 : A ⊆ [B]ε and B ⊆ [A]ε}.
Let us now introduce the Kantorovich-Hutchinson distance on the set of all Borel

regular probability measures on the metric space (X, d). We denote

P = {µ : µ is a non-negative Borel measure on X and µ(X) = 1},
and Lip1 as the space of all Lipschitz continuous functions defined on X with
Lipschitz constant less than or equal to one, i.e. f ∈ Lip1 if and only if |f(x) −
f(y)| ≤ d(x, y) for every x, y ∈ X.

Since (X, d) is compact, dK (µ, ν) = sup
{∣∣∫ f dµ− ∫ f dν∣∣ : f ∈ Lip1

}
gives a

distance on P such that the dK-convergence of a sequence is equivalent to its weak
star convergence to the same limit (see [7] for the Euclidean case and [3] for more
general settings).

In [3] is considered the following metric on K × P
δ ((Y1, µ1), (Y2, µ2)) = dH(Y1, Y2) + dK(µ1, µ2) ,

with (Yi, µi) ∈ K×P, i = 1, 2. So that (K×P, δ) becomes a complete metric space.
It also is proved that the set

E = {(Y, µ) ∈ K × P : supp(µ) ⊆ Y }
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GRADUAL DOUBLING PROPERTY OF HUTCHINSON ORBITS 3

is a closed subset of K × P, so that (E , δ) is a complete metric space.

Throughout this paper, a finite set Φ = {φi : X → X, i = 1, 2, . . . ,M} of
contractive similitudes with the same contractivity coefficient is given. Precisely,
each φi satisfies

d(φi(x), φi(y)) =
1

a
d(x, y)

for every x, y ∈ X and some a > 1. The constant 1
a is called the contractivity

coefficient.
We consider the transformation T induced by Φ, defined on (Y, µ) ∈ E for

T (Y, µ) = (T1(Y ), T2(µ)) = (Y ′, µ′) where

Y ′ =
M⋃
i=1

φi(Y ),

and

µ′(B) =
1

M

M∑
i=1

µ
(
φ−1i (B)

)
,

for every Borel subset B of X. It is easy to see that T : E → E is a δ-contraction.
From the (Banach) fixed point theorem we have that any δ-contractive mapping

T : E → E has a unique fixed point. Moreover, the fixed point can be achieved
as the limit for n → ∞ of the n-th iteration Tn of T starting at any initial point
(Y0, µ0) ∈ E .

Let us write (Y∞, µ∞) to denote the unique limit point of Tn(Y0, µ0), which
depends only on T but not on the starting space (Y0, µ0). The fractal set Y∞ is
called the attractor of the system Φ, and is the only compact set in X satisfying

Y∞ =

M⋃
i=1

φi(Y∞).

On the other hand µ∞ is called the invariant measure and is the only probability
Borel measure supported in Y∞ such that

µ∞(B) =
1

M

M∑
i=1

µ∞
(
φ−1i (B)

)
,

for every Borel set B (see [7], [12]).

We shall say that the system Φ = {φ1, . . . , φM} satisfies the open set condition
(OSC) if there exists a non-empty open set U ⊂ X such that

M⋃
i=1

φi(U) ⊆ U,

and φi(U)∩φj(U) = ∅ if i 6= j. We shall say that U is an open set for the OSC for
Φ (see for example [12], [7] and [16]).

The basic examples of IFS are the systems generating the most classical and
best-known fractal sets, such as the ternary Cantor set, the Sierpinski gasket and
carpet, and the von Koch snowflake. For example, in the case of the ternary Cantor
C set the system Φ is defined on X = [0, 1] equipped with the Euclidean distance
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4 H. AIMAR, M. CARENA, AND B. IAFFEI

d(x, y) = |x−y|, and consists of M = 2 contractive similitudes with contractivity co-
efficient equal to 1/3 (a = 3). More precisely φ1(x) = x/3 and φ2(x) = x/3 + 2/3.
Also U = (0, 1) is an open set for the OSC for Φ. If we take Y0 = [0, 1] and
µ0 = Lebesgue measure on Y0, we have that T1(Y0) = [0, 1/3] ∪ [2/3, 1], T 2

1 (Y0) =
[0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1], and in general, Tn1 (Y0) is the union of 2n

disjoint intervals of the n-th step in the usual construction of the Cantor set. De-
noting this union by Cn, we have that Tn2 (µ0) coincides with the uniform measure
on Cn normalized to a probability measure. But if we now take Y0 = {0} and µ0

to be the Dirac delta concentrated at 0, then Tn1 (Y0) is the collection Ln of all
the left points of each interval in Cn, and Tn2 (µ0) is the counting measure on Ln
divided by 2n. As we already mentioned, the fixed point depends only on T but not
on the starting space (Y0, µ0). In this case the limit (Y∞, µ∞) is the Cantor set C
with the s-dimensional Hausdorff measure on C, where s = log 2/ log 3 (see [7], [12]).

Then we consider some subclasses of E introduced in [2].

Definition 2.1. Given (Y, µ) ∈ E , we say that (Y, µ) is a space of homogeneous
type, or that µ is a doubling measure on Y , if there exists a constant A ≥ 1 such
that the inequalities

(2.1) 0 < µ(B(y, 2r)) ≤ Aµ(B(y, r))

hold for every y ∈ Y and every r > 0. When (Y, µ) ∈ E satisfies (2.1) we shall write
(Y, µ) ∈ DA to keep record of the quantitative parameter of the doubling property.
Set D =

⋃
A≥1DA.

We make some remarks concerning the classes DA defined above. First let us
observe that D1 is not empty, since every set consisting of a single point equipped
with any metric and with the counting measure, belongs to D1. Notice also that
if A1 ≤ A2 then DA1

⊆ DA2
. Finally let us point out that if (Y, µ) ∈ DA then

supp(µ) = Y . In fact, since (Y, µ) ∈ E we have supp(µ) ⊆ Y . On the other hand,
for y ∈ Y \ supp(µ) there exists an open set G containing y with µ(G) = 0. So that
for some ball B in Y we should have µ(B) = 0, which is impossible.

It is proved in [17] that, under the open set condition for the system Φ, the
limit set (attractor) equipped with the invariant measure and the usual Euclidean
distance, is a (normal or Ahlfors regular) space of homogeneous type. With our
notation (Y∞, µ∞) ∈ D. However, the examples in [2] show that it may happen
that the only points in the orbit satisfying the doubling property are (Y0, µ0) and
(Y∞, µ∞), but no other (Yn, µn) := Tn(Y0, µ0) is a space of homogeneous type.
These examples seem to suggest that, if we take a sequence {εn} whose elements
tend to zero when n→∞, then there exists a constant A ≥ 1 such that (2.1) holds
for every n, every y ∈ Yn and every r ≥ εn. This leads us to define the ε-doubling
condition for a measure and consequently another subclass of E .

Definition 2.2. For ε > 0, we shall denote by DεA the class of all those couples
(Y, µ) ∈ E for which (2.1) holds for every y ∈ Y and every r ≥ ε. Set Dε =⋃
A≥1DεA.

We shall now give a representative example of the above definition.

Example 2.3. Take Y = [0, 1] and µ(E) = 1
10card{E ∩ Z}, where the set Z

is defined by Z = { j10 , j = 0, 1, . . . , 9}. It is easy to see that (Y, µ) /∈ D since
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GRADUAL DOUBLING PROPERTY OF HUTCHINSON ORBITS 5

µ
(
B
(

1
20 ,

1
20

))
= 0 but µ

(
B
(

1
20 ,

1
10

))
= 1

5 . Nevertheless (2.1) becomes true for
every y ∈ Y , taking r ≥ 1/10.

3. Uniform gradual doubling orbits starting at any point of E

When the elements of the approximating sequence become more and more dou-
bling in a sense that will be precise, then the doubling property of the limit (Y∞, µ∞)
does not appear suddenly but naturally. This result is stated in the next proposi-
tion.

Proposition 3.1. Let ((Yn, µn))n≥1 be a sequence in E such that (Yn, µn) ∈ DεnA
for some sequence εn → 0 when n→∞. If (Yn, µn)

δ−→ (Y, µ) then (Y, µ) ∈ DA4 .

Proof. Take y ∈ Y and r > 0. Let ψ be the continuous function defined on R+
0

by ψ ≡ 1 on [0, 1], ψ ≡ 0 on [2,∞), and by assuming it to be linear on [1, 2]. For

t > 0 we denote ψy,t(x) = ψ
(
d(y,x)
t

)
for x ∈ X. Since Yn

dH−−→ Y , we can choose

yn ∈ Yn such that d(yn, y)→ 0 when n→∞. Then, since there exists n0 such that
yn ∈ B(y, r/16) and εn < 5r/16 for every n ≥ n0, we have that

µ(B(y, 2r)) ≤
∫
ψy,2r(x) dµ(x)

= lim
n→∞

∫
ψy,2r(x) dµn(x)

≤ lim inf
n→∞

µn (B (y, 4r))

≤ lim inf
n→∞

µn (B (yn, 5r))

≤ lim inf
n→∞

A4µn

(
B

(
yn,

5r

16

))
≤ A4 lim inf

n→∞
µn

(
B
(
y,
r

2

))
≤ A4 lim

n→∞

∫
ψy,r/2(x) dµn(x)

= A4

∫
ψy,r/2(x) dµ(x)

≤ A4µ(B(y, r)).

�

Let us state the additional hypothesis that we are assuming for the results in
the remainder of this section. We shall assume that (X, d) has furthermore finite
metric (or Assouad) dimension. This means that there exists a constant N ∈ N,
called a constant for the Assouad dimension of X, such that for every x ∈ X, every
r > 0 and every r-disperse subset E of X, we have that card(E ∩B(x, 2r)) ≤ N . A
set E is said to be r-disperse if d(x, y) ≥ r for every x, y ∈ E, x 6= y. If (X, d) has
finite metric dimension, then every r-disperse subset of X has at most Nm points
in each ball of radius 2mr, with m a positive integer (see [6] and [4]).

The following theorem is the main result of our paper. This theorem proves
that the elements of Hutchinson orbits generated by a transformation induced by
IFS become uniformly more and more doubling in the following sense: the doubling
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6 H. AIMAR, M. CARENA, AND B. IAFFEI

property is satisfied with the same doubling constant except, perhaps for radii which
decrease to zero as the step of the iteration grows.

Theorem 3.2. Let Φ = {φ1, . . . , φM} be a family of contractive similitudes on X
with the same contractivity coefficient 1/a and satisfying the OSC. Let U be an open
set for the OSC of Φ. Let (Y0, µ0) ∈ E such that Y0 ⊆ U , and for each non-negative
integer n, set (Yn, µn) = Tn(Y0, µ0). Then there exists a constant A ≥ 1 such that

(Yn, µn) ∈ D5a−n

A for each n.

Notice that the above theorem and Proposition 3.1 with εn = 5a−n show that,
even when no point of the orbit is a space of homogeneous type, the doubling
property of the limit space (Y∞, µ∞) does not appear suddenly.

In order to prove Theorem 3.2, we shall use the following three lemmas. In the
Lemmas 3.3 and 3.4 we assume the hypothesis (Y0, µ0) ∈ E with Y0 ⊆ U and we
use the definitions given below.

Let us fix u ∈ Y0, and for each non-negative integer n set

Tn({u}, λu) = (∆n, νn),

where λu is the unit mass at u. So that ∆n has Mn elements and for every x ∈ ∆n

we have νn({x}) = M−n. In other words, νn is the measure on X counting the
points of ∆n, normalized to a probability measure.

Notice that from the OSC each Yn can be written as a disjoint union of Mn

Borel pieces Y i
n , where i ∈ {1, 2, . . . ,M}n. Also ∆n ⊆ Yn and card(∆n ∩ Y i

n) = 1
for every i ∈ {1, 2, . . . ,M}n.

Lemma 3.3. There exists a constant C ≥ 1, depending on ρ = dist(Y0, ∂U) > 0,
such that the inequalities

C−1rs ≤ νn(B(x, r)) ≤ Crs,
hold for every r ≥ ρa−n, every x ∈ ∆n and every n ∈ N, where s = logaM .

The above lemma states that each (∆n, νn) is Ahlfors s-regular space for every
r ≥ ρa−n with constant which not depends on n.

Lemma 3.4. The elements of the sequence ((∆n, νn))n≥1 are uniformly spaces

of homogeneous type. In other words, there exists a constant Ã ≥ 1 such that
((∆n, νn))n≥1 ⊆ DÃ.

Finally we shall state some basic results about IFS. Given i = (i1, i2, . . . , ik) ∈
{1, 2, . . . ,M}k we denote with φi the composition φik ◦φik−1

◦· · ·◦φi2 ◦φi1 . Also, if

i0 ∈ {1, 2, . . . ,M} we write i′ = (i0, i) to denote the (k+ 1)-tuple (i0, i1, i2, . . . , ik).

Lemma 3.5. With U an open set for the OSC for Φ, we have

(a) if i, j ∈ {1, 2, . . . ,M}k and i 6= j, then φi(U) ∩ φj(U) = ∅;
(b) if i = (i, i′) with i′ ∈ {1, 2, . . . ,M}k and i ∈ {1, 2, . . . ,M}, then φi(U) ⊆

φi′(U);
(c) if i′ and j′ are two different elements in {1, 2, . . . ,M}k and i = (i, i′) where

i ∈ {1, 2, . . . ,M}, then φi(U) ∩ φj′(U) = ∅;
(d) for any fixed u ∈ U and each positive integer n, if we define

∆n =
{
φj(u) : j ∈ {1, 2, . . . ,M}n

}
,

then we have that

card (φ`(U) ∩∆n) = Mn−k
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GRADUAL DOUBLING PROPERTY OF HUTCHINSON ORBITS 7

for every k ≤ n and every ` ∈ {1, 2, . . . ,M}k.

The proof of Lemma 3.5 is contained in [2]. We shall postpone the proofs of the
Lemmas 3.3 and 3.4 and we give the proof of the theorem.

Proof of Theorem 3.2 . Let (Y0, µ0) ∈ E such that Y0 ⊆ U . Notice that

µn(Y j
n ) = µn(φj(Y0)) = M−n

for every n ∈ N and every j ∈ {1, 2 . . . ,M}n. In fact, for a fixed j ∈ {1, 2 . . . ,M}n
we have that

µn(φj(Y0)) = M−n
∑

i∈{1,2...,M}n
µ0

(
φ−1i (φj(Y0))

)
= M−nµ0(Y0) +M−n

∑
i∈{1,2...,M}n

i6=j

µ0

(
φ−1i (φj(Y0)

)
.

Since µ0(Y0) = 1 and φ−1i (φj(Y0)) = ∅ for every choice of i 6= j (see Lemma 3.5 (a)),
we have the claim.

Fix n ∈ N, y ∈ Yn and r ≥ 5a−n. There exists one and only one i ∈ {1, . . . ,M}n
such that y ∈ Y i

n . Let us write xin to denote the unique point in ∆n ∩ Y i
n . Then

d(y, xin) ≤ a−n. For t > 2a−n denote

Bk = B(xin, t+ (k − 2)a−n),

k = 0, 1, 3, 4. Notice that
B1 ⊆ B(y, t) ⊆ B3,

and then
µn(B1) ≤ µn(B(y, t)) ≤ µn(B3).

We claim that the comparison of the measure µn with the counting measure νn on
∆n is the following

(3.1) µn(B1) ≥ νn(B0) and µn(B3) ≤ νn(B4).

If the claim holds, then

νn(B0) ≤ µn(B(y, t)) ≤ νn(B4)

for every y ∈ Y i
n and t > 2a−n. Let Ã ≥ 1 be a constant such that {(∆n, νn) : n ∈

N} ⊆ DÃ (see Lemma 3.4). Then

µn(B(y, 2r)) ≤ νn(B(xin, 2r + 2a−n))

≤ Ã2νn(B(xin, (r + a−n)/2))

≤ Ã2µn(B(y, (r + 5a−n)/2))

≤ Ã2µn(B(y, r)),

and the result holds with A = Ã2. Then it only remains to prove the inequalities
contained in (3.1). To show the first one we define the set

J = {j ∈ {1, . . . ,M}n : Y j
n ⊆ B1}.

Let us prove that if xjn ∈ B0 ∩ ∆n then j ∈ J . Since xjn ∈ B0 we have that
d(xjn, x

i
n) < t− 2a−n. To see that Y j

n ⊆ B1 fix z ∈ Y j
n . Since diam(Y j

n ) = a−n we
have that d(z, xjn) ≤ a−n. Then

d(z, xin) ≤ d(z, xjn) + d(xjn, x
i
n)
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8 H. AIMAR, M. CARENA, AND B. IAFFEI

< a−n + t− 2a−n

= t− a−n,
and hence Y j

n ⊆ B1. So that

µn(B1) ≥
∑
j∈J

µn(Y j
n )

=
∑
j∈J

M−n

=
∑
j∈J

νn({xjn})

≥ νn(B0).

To prove the second inequality let us now define the set

Q = {q ∈ {1, . . . ,M}n : Y q
n ∩B3 6= ∅}.

Observe that if q ∈ Q then Y q
n ⊆ B4. In fact, if q ∈ Q there exists zqn ∈ Y q

n ∩
B(xin, t+ a−n). Then for every z ∈ Y q

n we have

d(z, xin) ≤ d(z, zqn) + d(zqn, x
i
n)

< a−n + t+ a−n

= t+ 2a−n,

and then z ∈ B4. Hence

µn(B3) ≤
∑
q∈Q

µn(Y q
n )

=
∑
q∈Q

νn({xqn})

≤ νn(B4),

as desired. �

Proof of Lemma 3.3 . Fix n ∈ N, x ∈ ∆n = {φi(u) : i ∈ {1, 2, . . . ,M}n} and r ≥
ρa−n, where ρ = dist(Y0, ∂U) > 0. Let us start with the following two remarks.
The first one is that if ` ∈ {1, 2, . . . ,M}k and k ≤ n, then from Lemma 3.5 (d) we
have

νn(φ`(U)) = M−ncard(φ`(U) ∩∆n) = M−k = a−ks,

with s = logaM .
The second remark is that the OSC implies that ∆n is a ρa−n-disperse set. In

fact, take j, i ∈ {1, . . . ,M}n with j 6= i, and set xn,j = φj(u) and xn,i = φi(u).
Since U is an open set, we have that B(u, ρ) ⊆ U . Then

B(xn,j , ρa
−n) = φj (B(u, ρ)) ⊆ φj(U),

B(xn,i, ρa
−n) = φi (B(u, ρ)) ⊆ φi(U),

and since φj(U) and φi(U) are disjoint, we have B(xn,j , ρa
−n)∩B(xn,i, ρa

−n) = ∅.
This implies that d(xn,j , xn,i) ≥ ρa−n.

Assume first that r > a−n. Set k to denote the only integer less than or equal
to n for which a−k < r ≤ a−k+1. For the lower bound, with x = φi(u), i =
(i1, i2, . . . , in) and i′ = (in−k+1, in−k+2, . . . , in) we have that

φi′(U) ∩∆n ⊆ B(x, r) ∩∆n.
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In fact, if y ∈ φi′(U) ∩∆n then y = φ`(u), where

` = (`1, `2, . . . , `n−k, in−k+1, in−k+2, . . . , in),

for some `1, `2, . . . , `n−k ∈ {1, 2, . . . ,M}. Then

d(x, y) ≤ a−k < r.

Hence

νn(B(x, r)) ≥ νn(φi′(U))

= a−ks

≥ a−srs.

For the upper bound, we define

J = {j ∈ {1, 2, . . . ,M}k : B(x, r) ∩ φj(U) 6= ∅}.

Since {φj(U), j ∈ {1, 2, . . . ,M}k} is a covering of ∆n we have that

B(x, r) ∩∆n ⊆
⋃
j∈J

φj(U).

From the first remark at the beginning of the proof,

νn(B(x, r)) ≤
∑
j∈J

νn(φj(U))

= card(J )a−ks

≤ card(J )rs.

We only have to show that card(J ) is bounded by a constant which does not
depend on x and r. In order to prove it, let us identify each j ∈ J with the point
φj(u) ∈ φj(U), and let us define the set A = {φj(u) : j ∈ J }. Since φj(U) are
pairwise disjoint for j ranging on the set of indices with fixed length, we have that
card(J ) = card(A). Notice that A ⊆ B(x, 2r). In fact, if j ∈ J then there exists
y ∈ B(x, r) ∩ φj(U), and

d(φj(u), x) ≤ d(φj(u), y) + d(y, x) < a−k + r ≤ 2r.

Since, being a subset of ∆k, the set A is ρa−k-disperse, we have that

card(A) = card(B(x, 2r) ∩ A) ≤ card(B(x, 2a−k+1) ∩ A) ≤ N `,

where ` is a positive integer such that 2` ≥ 2a/ρ and N is a constant for the finite
Assouad dimension of X.

Let us finally check the case ρa−n ≤ r ≤ a−n. Notice first that

νn(B(x, r)) ≥ νn(B(x, ρa−n)) ≥M−n = a−ns ≥ rs,
and on the other hand,

νn(B(x, r)) ≤ νn(B(x, a−n))

= M−ncard
(
∆n ∩B(x, a−n)

)
≤ N `−1a−ns

≤ N `−1ρ−srs,

with ` and N as before.
Hence the result holds with C = N `ρ−s. �
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Proof of Lemma 3.4. Fix n ∈ N, x ∈ ∆n and r > 0. If 2r < ρa−n, since ∆n is ρa−n-
disperse (see proof of Lemma 3.3) we have that B(x, 2r)∩∆n = B(x, r)∩∆n = {x}
and the result holds taking Ã = 1. Otherwise, if 2r ≥ ρa−n, we shall consider the
cases r ≥ ρa−n and r < ρa−n and in both cases we shall use Lemma 3.3. In the
first case we obtain

νn(B(x, 2r)) ≤ C2srs ≤ C22sνn(B(x, r)).

On the other hand, when r < ρa−n ≤ 2r, since as = M we have

νn(B(x, 2r)) ≤ C2srs

< C2sρsa−ns

= C2sρsM−n

= C2sρsνn(B(x, r)).

Hence the lemma holds with Ã = C2sρs. �

As we already mentioned, for the sake of notational simplicty we have assumed
the same contractivity coefficient 1/a for each contractive similitude φi, for i =
1, . . . ,M . Nevertheless, the results in this paper still hold in the case of different
coefficient 1/ai, with ai > 1 for every i. In this case, Lemma 3.3 holds with amax

instead of a, where amax := max1≤i≤M ai, proof of Lemma 3.4 follows the same
lines, and Theorem 3.2 holds with amin instead of a, where amin := min1≤i≤M ai.

4. Uniform upper doubling property of the orbits

A new class of metric measure spaces is introduced in [8], which generalizes the
spaces of homogeneous type as well as power-bounded measures on Rn, that have
been in the centre of the recent developments of non-doubling harmonic analysis
theory.

Given a metric space (X, d) and Y ⊆ X, a Borel measure µ on Y is called upper
doubling if there exist a function λ : Y × R+ → R+ and a constant Cλ such that

λ(y, r) ≤ λ(y, s),

λ(y, 2r) ≤ Cλλ(y, r),

µ(B(y, r)) ≤ λ(y, r),

for every y ∈ Y , r > 0 and s ≥ r. The function λ is called dominating function,
and we say that (Y, µ) is an upper doubling space.

Then, a doubling measure is a special case of upper doubling measure, with
λ(x, r) = µ(B(x, r)). On the other hand, non-doubling harmonic analysis has
recently been developed in the spaces (Rn, µ) with µ(B(x, r)) ≤ Crt, for some t ∈
(0, n], which are upper doubling spaces with the dominating function λ(x, r) = Crt.

The interest of upper doubling spaces has been growing during the last few years
because these spaces provide an adequate framework for an abstract extension of
results of harmonic and real analysis (see for example [8], [9], [10], [11] and [13]).

In this section we shall apply Theorem 3.2 in order to show that the orbits are
uniformly upper doubling spaces. We shall keep the assumption of finite metric
dimension of (X, d) and the hypothesis of Theorem 3.2, and as before we shall use
(Yn, µn) to denote the space Tn(Y0, µ0).
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For a fixed n, we define a dominating function λn : Yn × R+ → R+ in the
following way:

λn(y, r) =

{
µn(B(y, r)), if r ≥ 5a−n;
µn(B(y, 5a−n)), if r < 5a−n.

The following result states that the orbits (Yn, µn) are uniformly upper dou-
bling spaces. Here the “uniformity” refers to the doubling constant Cλn for the
dominating function λn.

Theorem 4.1. The sequence ((Yn, µn))n≥1 is a uniform family of upper doubling
spaces, in the sense that the doubling constant of all dominating functions is the
constant A of Theorem 3.2.

Proof. Let us fix a natural number n, y ∈ Yn and r > 0. Is clear that µn(B(y, r)) ≤
λn(y, r) and that λn(y, r) ≤ λn(y, s) if s ≥ r. Also, if r ≥ 5a−n from Theorem 3.2
we have that

λn(y, 2r) = µn(B(y, 2r)) ≤ Aµn(B(y, r)) = Aλn(y, r).

On the other hand, if r < 5a−n, we shall consider the cases 2r < 5a−n and 2r ≥
5a−n. In the first case we have λn(y, 2r) = λn(y, r), and in the second one we have

λn(y, 2r) ≤ λn(y, 10a−n) ≤ Aλn(y, 5a−n) = Aλn(y, r).

So that we can take Cλn
= A for every n. �

Remark 4.2. Since from Proposition 3.1 the limit measure have the doubling prop-
erty with constant A4, then µ is trivially upper doubling with dominating function
λ(y, r) = µ(B(y, r)) for y ∈ Y and for all r > 0. On the other hand, since A is
greater than 1 we can conclude, using above theorem, that all spaces of the orbit
and its limit space are upper doubling spaces, where each corresponding dominating
function has doubling constant A4.
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Étude de certaines intégrales singulières. Zbl 0224.43006, MR0499948 (58 #17690)

[7] Kenneth Falconer: Techniques in fractal geometry. John Wiley & Sons Ltd., Chichester, 1997.
Zbl 0869.28003, MR1449135 (99f:28013)

[8] Tuomas P. Hytönen: A framework for non-homogeneous analysis on metric spaces, and the

RBMO space of Tolsa. Publ. Mat., Barc., 54(2):485–504, 2010. Zbl 1246.30087, MR2675934
(2011j:42041)

Prep
rin

t

The final version of this article will  appear in the Czechoslovak Mathematical Journal

 
IMAL PREPRINT # 2014-0020 

                         ISSN 2451-7100 
Publication date: July 18, 2014



12 H. AIMAR, M. CARENA, AND B. IAFFEI

[9] Tuomas P. Hytönen, Suile Liu, Dachun Yang and Dongyong Yang: Boundedness of Calderón-

Zygmund operators on non-homogeneous Metric Measure Spaces. Canad. J. Math., 64(4):

892–923, 2012. Zbl 1250.42044, MR2957235
[10] Tuomas P. Hytönen and Henri Martikainen: Non-homogeneous Tb theorem and ran-

dom dyadic cubes on metric measure spaces. J. Geom. Anal., 22(4):1071–1107, 2012. Zbl

1261.42017, MR2965363
[11] Tuomas P. Hytönen, Dachun Yang and Dongyong Yang: The Hardy space H1 on non-

homogeneous metric spaces. Math. Proc. Cambridge Philos. Soc., 153(1):9–31, 2012. Zbl

1250.42076, MR2943664
[12] John E. Hutchinson: Fractals and self-similarity. Indiana Univ. Math. J., 30(5):713–747,

1981. Zbl 0598.28011, MR625600

[13] Bibiana Iaffei and Lilian Nitti: Riesz Type Potentials in the framework of quasi-metric spaces
equipped with upper doubling measures. arXiv:1309.3755, 2013.

[14] Jun Kigami: A harmonic calculus on the Sierpiński spaces. Japan J. Appl. Math., 6(2):259–
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