ISSN 2451-7100

IMAL preprints

http://www.imal.santafe-conicet.gov.ar/publicaciones/preprints/index.php

DIRECTIONAL CONVERGENCE OF SPECTRAL
REGULARIZATION

METHOD ASSOCIATED TO FAMILIES OF CLOSED OPERATORS
By

Gisela L. Mazzieri, Ruben D. Spies and Karina G. Temperini

IMAL PREPRINT # 2014-0019
Publication date: July 15, 2014

Editorial: Instituto de Matematica Aplicada del Litoral
IMAL (CCT CONICET Santa Fe — UNL)
http://www.imal.santafe-conicet.gov.ar

Publications Director: Dr. Rubén Spies
E-mail: rspies@santafe-conicet.gov.ar

I M A L

CONICET



mailto:rspies@santafe-conicet.gov.ar

The final version of this article appeared in Comp. Appl. Math. (2013) 32:119-134
DOI 10.1007/s40314-013-0016-8. Please contact the authors for further information ISSN 2451-7100
IMAL PREPRINT # 2014-0019 Publication date: July 15, 2014

Directional convergence of spectral regularization
method associated to families of closed operators®
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Abstract

We consider regularized solutions of linear inverse ill-posed problems obtained with
generalized Tikhonov-Phillips functionals with penalizers given by linear combinations
of seminorms induced by closed operators. Convergence of the regularized solutions is
proved when the vector regularization rule approaches the origin through appropriate
radial and differentiable paths. Characterizations of the limiting solutions are given.
Finally, a examples of image restoration using generalized Tikhonov-Phillips methods
with convex combinations of seminorms are shown.
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1 Introduction

Very often an inverse problem can be formulated as the necessity of approximating z in an
equation of the form
Tr =y, (1)

where T is a linear bounded operator between two infinite dimensional Hilbert spaces X and
Y (in general these will be function spaces), the range of T, R(T), is non-closed and y is
the data, supposed to be known, perhaps with a certain degree of error. It is well known
that under these hypotheses, problem (1) is ill-posed in the sense of Hadamard ([4]). In this
case the ill-posedness is a result of the unboundedness of T, the Moore-Penrose inverse of
T. The Moore-Penrose inverse is a fundamental tool in the treatment of inverse ill-posed
problems and their regularized solutions. This is so mainly because the least-squares solution
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of minimum norm of problem (1), also known as the best approximate solution, is precisely
given by z' = Ty, which exists if and only if y € D(TT) = R(T)®R(T)*. Moreover, for any
given y € D(T7), the set of all least-squares solutions of problem (1) is given by a7 + N(T),
where NV (T') denotes the null space of the operator T

Since T is unbounded, small errors or noise in the data y may induce arbitrarily large
errors in the corresponding approximated solutions (see [13], [12]), thus turning unstable
all standard numerical approximation methods, making them unsuitable for most applica-
tions and inappropriate from any practical point of view. The so called “regularization
methods” are mathematical tools designed to restore stability to the inversion process and
consist essentially of parametric families of continuous linear operators approximating 7°F.
The mathematical theory of regularization methods is very wide (a comprehensive treatise
on the subject can be found in the book by Engl, Hanke and Neubauer, [3]) and it is of great
interest in a broad variety of applications in many areas such as Medicine, Physics, Geology,
Geophysics, Biology, image restoration and processing, etc.

There are many ways of regularizing an ill-posed inverse problem. Among the most
standard and traditional ones we mention the Tikhonov-Phillips method ([11], [14], [15]),
truncated singular value decomposition (TSVD), Showalter’s method, total variation regular-
ization ([1]), etc. However, the best known and most commonly and widely used is without a
doubt the Tikhonov-Phillips regularization method, which was originally and independently
proposed by Tikhonov and Phillips in 1962 and 1963 (see [11], [14], [15]). Although this
method can be formalized within a very general framework by means of spectral theory ([3],
2]), the widespread of its use is undoubtedly due to the fact that it can also be formulated in
a very simple way as an optimization problem. In fact, the regularized solution of problem
(1) obtained by applying the classical Tikhonov-Phillips method is the minimizer z,, of the
functional

Jol@) = Iz — ylP + o o], 2)

where « is a positive constant known as the regularization parameter.

The penalizing term « ||z|| in (2) not only induces stability but it also determines certain
regularity properties of the approximating regularized solutions z, and of the corresponding
least-squares solution which they approximate as the regularization parameter o approaches
0F. Thus, for instance, it is well known that minimizers of (2) are always “smooth” and,
for a — 07, they approximate the least-squares solution of minimum norm of (1), that is
lim,_o+ o = TTy. This method is known as the Tikhonov-Phillips method of order zero.
Choosing other penalizers gives rise to different approximations with different properties,
approximating different least-squares solutions of (1). Thus, for instance, the use of ||z’
as penalizer instead of ||z|° in (2) gives rise to the so called Tikhonov-Phillips method of
order one, the penalizer ||z||,, (where ||-||,, denotes the bounded variation norm) originates
the so called bounded variation regularization method introduced by Acar and Vogel in 1994
([1]), etc. In particular, in the latter case, the approximating solutions are only forced to be of
bounded variation rather than smooth and they approximate, for & — 07, the least-squares
solution of problem (1) of minimum ||-||,,-norm (see [1]). This method has been proved to
be a good choice in certain image restoration problems in which it is highly desirable to
preserve sharp edges and discontinuities of the original image.

Thus, the penalizing term in (2) is used not only to stabilize the inversion of the ill-posed
problem but also to enforce certain characteristics of the approximating solutions and of the
particular limiting least-squares solution that they approximate. Hence, it is reasonable to
assume that an adequate choice of the penalizer, based on a-priori knowledge about certain
characteristics of the exact solution of problem (1), will lead to approximated “regularized”
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solutions which will appropriately reflect those characteristics.
For the case of Tikhonov-Phillips functionals with a general penalizer W, i.e.

Jwa(x) = ||Tx —y|> + aW(z) zeD, (3)

where W(-) is an arbitrary functional with domain D C X and « is a positive constant,
sufficient conditions on W guaranteeing existence, uniqueness and stability of the minimizers
where found in [10].

In this article we study the case in which the penalizer W in (3) is given by W(x) =

Zz‘N:1 a;||Liz||?, where o; > 0 Vi = 1,2,..., N, and the L;’s are operators satisfying certain
hypotheses. For these cases we analyze the convergence of the minimizers as the vector
regularization rule @ = (ay, ay, ..., ay)’ approaches 0 through appropriate paths. We will

also characterize the limiting least-squares solutions. Finally, several examples consisting of
applications to image restoration are presented.

2 Preliminaries

The so called “best approximate solution” ' of problem (1) is defined as the least-squares
solution on minimum norm. Thus, 2! satisfies:

(i) |72 —y|| = wf{||T> -y : 2 € XY,
(i) [|=f|| = inf{]|z| : = is a least-squares solution of Tz = y}.

It is a well known fact that z' exists if and only if y € D(TT) = R(T) & R(T)*, in which
case it is given by #' = T''y. When T is not injective, choosing the minimum norm solution
is a way of forcing uniqueness of solutions. In some cases, however, this may not be the
best choice. For instance, one could be interested in selecting the least-squares solution that

minimizes the seminorm induced by a certain operator L, i.e., find xi, least-squares solution
of (1) such that

HLQ:H‘ = inf{||Lz|| : z is a least-squares solution of Tz = y},

where L is a given operator on a certain domain D C X. From a purely mathematical point
of view, the characterization of such a least-squares solution can be done via the weighted
generalized inverse of T' (see [3]). Independently of the operator L, however, approximating
2! is still an unstable problem, requiring regularization. With that in mind we propose the

following minimization problem:

in || T2 —y|*+ «||Lz||?*. 4
xgg&)ﬂ r—y|I” + || Lz (4)

Clearly, a solution of (4), if it exists, belongs to D(L). Hence, the use of || Lz||* as a penalizer
is only appropriate under such “a-priori” knowledge about the exact solution. When that
assumption is uncertain one can still use ||Lx||? as a penalizer by considering the Hilbert
scale induced by L over X (see [3] and also [9]).

Throughout this section we will suppose that L is a linear closed, densely defined operator
mapping D(L) C X onto a Hilbert space Z (often L is a differential operator) satisfying the
following “complementation condition”:

(CC) 3 4 > 0 such that ||Tz|” + ||Lz||> > v |jz|* Yz € D(L).
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Note that condition (CC) implies N (T)NN (L) = {0}. It is easy to prove that if dim N (L) <
00, then the condition N (L) NN (T) = {0} is also sufficient for (CC). This is particularly
important when L is a differential operator.
We now define a new inner product and a “weighted” norm on D(L) by:
(0, )0 = (T, T8) + (Lo, LB),  ally, = (0,202, = € D(L) 5)

TL’

It can be easily proved that D(L), equipped with this 7'L-inner product is a Hilbert space
(see [3]) that we shall denote by X;,. Throughout the rest of this section the subscript “T'L”
will always make reference to this space.

Consider now the operator T}, defined as the restriction of 7" to D(L), that is,

T, : XTL = (D<L); <'; '>TL> — Y (6>

r — Tx

We shall denote with LTTL and TQTL the Moore-Penrose inverses of L : X, — Z and
T, : Xy, — Y, respectively. It is timely to point out that T}, and LI, are, in general,
different from the generalized inverses 71 and LT, respectively. We shall refer to the former
ones as the “weighted generalized inverses”, to distinguish them from the latter ones and to
emphasize the fact that they are obtained by considering the inner product “weighted” by
the operators T and L, defined in (5).

We will also need to consider the operator T, = Tjxz). This operator will play an
important role in the definition of a regularization family of operators that we will introduce
later on, since T , the Moore-Penrose inverse of T; is bounded. Note also that the generalized
inverses TOT and TOT,T . are equal since Tj is injective.

The following fundamental result relates the least-squares solutions of (1) with the
weighted generalized inverse Ti,.

Theorem 2.1. Let y € D(T;L). Then x} = T;Ly 1s a least-squares solution of Thx =y and
for any other least-squares solution T there holds

|Lat|| < ||ILZ].

Also, if the range of T is not closed then the operator T}, is unbounded.
Proof. See [3]. O

Remark 2.2. Note here that if N(T) NN (L) was not trivial then the solution x} charac-
terized by the previous theorem would not be unique. It is also important to note that no
selection of L can transform problem (1) into a well-posed problem. In fact the ill-posedness
1s a consequence of the fact that the range of T is not closed.

Having defined and characterized the operator T}, we are now interested in finding appro-
priate regularizations. For this purpose we could, in principle use all classical regularization
methods considering the operator T' defined on the Hilbert space X, and define a family
of regularization operators R, as R, = go(T*T)T*, given an appropriately chosen family of
functions g,, where T* denotes the adjoint of T}, in the T'L-topology. This approach, for the
traditional Tikhonov-Phillips method, was studied by Locker and Prenter in [8]. From the
computational point of view, the approach presents some disadvantages since it requires the
computation of the adjoint operator T* = (T*T + L*L)~'T* (see [8]). However, there exists
a way of regularizing T}, without having to compute the adjoint operator T%, as the next
theorem shows.
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Theorem 2.3. Let X, Y and Z Hilbert spaces, T € L(X,)), T the Moore-Penrose gen-
eralized inverse of T, L : D(L) C X — Z a linear, densely defined, close operator,
LTTL the Moore-Penrose generalized inverse of L on Xr,, T, as in (6) y B = TLLTTL. Let
g 1 [0,|B]’] = R, a >0, be a family of functions satisfying the following conditions:

(C1) For every a € (0, ), ga(N) is piecewise continuous for A € [0,+00) and continuous
from the right at points of discontinuity.

(C2) There ezists a constant C' > 0 (independent of ) such that |Aga(N)| < C for every
A € [0, +00), for every a € (0, ). ,

(C8) For every X\ € (0, +00), 1i1£1+ga(/\) =5

Fory e D(T;«L) we define the reqularized solution of problem (1) by
Ray = T) + L, 9.(B*B)B'y. (7)
Then for every y € D(T;L) there holds

Roy — Tly, LR.y— LT}y, TRy — Qy,

as @ — 0% (here Q is the orthogonal projection of ¥ onto R(T) = R(T.)). If y € D(TL.),
then lin(z)l+ |ILR,y|| = oc.

Proof. See [3]. O

Note that the convergence result of Theorem 2.3 is equivalent to convergence in the norm
of the graph of the operator L, defined on D(L) as ||z|> = ||l||* + || L=||?, which is clearly
stronger than the original norm in X.

In the following proposition a relation between the regularized solutions defined in (7)
and a generalized Tikhonov-Phillip method with penalizer || Lz || is shown.

Proposition 2.4. Let X, Y, Z, T, T%, L, L},, T,, B ="T,L%, and R, all as in Theorem
2.3. Also fory € D(T;ﬁL), let o, = Roy = TOTy + L;Lga(B*B)B*y with go(N\) = HLO& Then
for each fired o > 0, z,, is the unique global minimizer of the generalized Tikhonov-Phillips
functional
Jo :D(L) — R*
x — | Toe —ylI* + || La|*.

(8)

Proof. See [3]. O

Remark 2.5. Since the family of functions g.(\) = )\j%a clearly satisfies the hypotheses of
Theorem 2.3, it then follows from Proposition 2.4 that the reqularized solutions obtained with

the generalized Tikhonov-Phillip method with penalizer ||Lz||*> converge to Ti,y as o — 0F
provided that y € D(T},).

In light of the previous analysis and results one sees that the penalizing term in (8), on one
hand induces stability and on the other hand it allows the approximation of z} in such a way
that the approximated regularized solutions share with the exact solution certain properties
or characteristics that one presumes that such a solution possesses. Hence, it is reasonable
to assume that an adequate choice of the penalizer, based on the “a-priori” knowledge of
certain type of information about the exact solution, will result in approximated solutions
which appropriately reflect those characteristics. Following this line of reasoning it is also
reasonable to assume that the simultaneous use of two or more penalizers of different nature
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will, in some way, allow the capturing of different characteristics on the exact solution. This
is particularly relevant, for instance, in image restoration problems in which it is known “a-
priori” that the original image is “blocky”, i.e. it possesses both regions of high regularity
and regions with sharp discontinuities. In the following section we shall extend the results of
Theorem 2.3 and Proposition 2.4 to this type of penalizers. It is important to note however
that the regularization parameter will now be vector-valued.

3 Penalization with linear combination of semi-norms
associated to closed operators

We study here the case of generalized Tikhonov-Phillips regularization methods for which
the penalizing terms in (8) is of the form W (z) = S2 | a;|| Liz||?, where the L;’s are closed
linear operators, i.e. we consider functionals of the form

N
Tanntnin (@) = 1 Tx = y|* + Y aull Loz ]* (9)
=1

The following results (which can be found in [10]) establish conditions guaranteeing ex-
istence, uniqueness and strong stability of the global minimizers of the functional (9).

Theorem 3.1. Let X, Z,, Z,,..., Zy be reflexive Banach spaces, Y a normed space, T €
L(X,Y), D a subspace of X, L; : D — Z;, 1 = 1,2,..., N, closed linear operators with
R(L;) weakly closed for every 1 < i < N and such that T, L,, L,, ..., Ly are complemented,
i.e. there exists a constant k > 0 such that |Tx||®> + 3, | Lz||> > k||z||?, Y& € D. Then,
foranyy € Y, ay,a,,...,ay € R the functional J; ., ., () given in (9) has a unique
global minimazer.

,,,,, Ly

Proof. See [10]. O

Under the same hypotheses of Theorem 3.1 one has that the minimizer of (9) is stable
under perturbations in the data y, in the parameters «; and in the model operator T'. Before
we proceed to the statements of this results, we shall need the following definition.

Definition 3.2. (W -uniform consistency) Let X, ) be vector spaces, T € L(X,)) and
W,F, F,,n =1,2,...; functionals defined on a set D C X. We will say that the sequence
{F,} is W-uniformly consistent for F if F,, — F uniformly on every W -bounded set, that is
if for any given ¢ > 0 and € > 0, there exists N = N(c,€) such that |F,(z) — F(z)| < € for
every n > N and every x € D such that |W(z)| < c.

Lemma 3.3. Let all the hypotheses of Theorem 3.1 hold. Let also L= (Ly, Ly, ..., Ly)T,
Y,y €V, T € L(X,Y), n=1,2,..., such that y, — y, {T,} is L-uniformly consistent for
T and for each i =1,2,...,N, let {a}>>, C RY such that o} — a; asn — oo. If x, is a
global minimizer of the functional

N
Jn(@) = | Tz — | + ZO‘? Lz|%, (10)

=1

then x,, — &, where T is the unique global minimizer of (9).

Proof. See [10]. O
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3.1 Radial convergence of spectral methods

Let X, Z,, Z,, ..., Zy Hilbert spaces, D a dense subspace of X, L, : D — Z; ;i=1,2,..., N,
N

linear, closed surjective operators such that the operator L : X — ®ZZ~ defined by

i=1
L=(L,L,,... ,LN)T has closed range. Suppose also that L satisfies the following comple-
mentation condition:

(CC): 3~ >0 such that ||T,z|* + || Lz|* > v ||z|* Yz eD,

or equivalently

N
37 > 0 such that |Toaz)*+ > || Liz|* > v|lz|* V€D, (11)

=1

where the operator T, is defined as T, = T, Let also @ = a7, where a € R* and

D

N

7= (M, Moy - - ,nN)T € RY such that Zf\; n; = 1. Define the operator L, : D — ®Zl-,
i=1

L, = (\/ﬁlLl, Vi,La, -, \/ﬁNLN)T and a new weighted inner product and its associated

norm on D as:

(@, @)rr, = (T2, T,7) + (Lyw, L;T), ||x||TLﬁ = (x,z))? 2,7 €D. (12)

)
TL77

It can be easily proved that X, = (D, ||-||TLTT) is a Hilbert space. Denote with LTTL77 the
Moore-Penrose inverse of the operator L, on D with this new 7'L -inner product, i.e. consider
L as an operator from Xy, into Y, and let By and T, the operators defined by B; : @) Z; —
Y, By =TLL, v Ty = Tivw:

The following theorem generalizes the result given by Theorem 2.3 to the case of a
penalizer given by a linear combination of seminorms induced by closed operators.

Theorem 3.4. Let {go} be a spectral regularization method, {Ra,ﬁ}ae(o ||B—||2) a family of
’ n
operators from Y into X defined by

R.3=T§ + L}, ga(B;B;)B;. (13)
Then {Raﬁ}ae(o B ”2> is a family of reqularization operators for TJLﬁ. In particular for every
|| B3

Yy € D(T;Lﬂ) there holds lim+ R,y = T;LTy, lim+ L:R,;y = LﬁTTTLﬁy and lim+ T.R,;y =
n a—0 K a—0 a—0
Qy, where Q is the orthogonal projection of Y onto R(T) = R(T,).

Proof. Clearly the operator L is linear. We will prove that L satisfies the complementation
condition. For this note that for every € D there holds

N
2 2 2 2
Tl + | Lo = | Toel* + Y s || Lix]
i=1

N
. 2 )
min {1} (Hmu + 3 sl )

v
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= min {n} (|Z,]® + | L)

> 1f<m<fllv{77z}7 ]| (since L satisfies (CC))

From this and by virtue of Theorem 2.3 it follows that the family {Raﬁ}ae<0 ||B‘||2> is a
gtz
regularization for TTTLﬁ and therefore for every y € D(T;,Lﬁ), lim+ R..y= T;Lﬁy. Moreover,
a—0
from Theorem 2.3 it also follows that lim L;R,;y = L,TT;[Lﬁy and lim+ Tro Rozy = Qy
a—0

a—0t

(where @ is the orthogonal projection of Y onto R(T') = R(T1})). O

Remark 3.5. Note that x; = T;Lﬁy is the best approrimate solution of Tyx =1y for x € D,
T

zlll <

TLﬁ

that s, x;ﬂ 15 the least-squares solution of the problem T'x =y in D which satisfies ‘

\|Z] ., for any other least-squares solution .
7

The following result characterizes the regularized solutions R, -y, in the particular case
in which the family of functions {g,} is given by gn(A) = A4+a

Lemma 3.6. Let y € 'D(TTTLﬁ), L, L, TL,TOT,LTTLﬁ,T;[Lﬁ,Bﬁ and R, ; as previously defined
and . ; = R,y with g,(\) = )\J%a If the operator L is surjective, then for each fixed &
(@ = aff), ., is the unique global minimizer of the generalized Tikhonov-Phillips functional

defined by Js 1, 1,

.....

i=1
1.€.
arg minJsp, 1, oy (%) = Ragy = Toy
z€D

Proof. Since

N N

T2 — yl> + > aillLizl® = || Toa — yl* + > anl| Liz||* = | T2 — yl* + o Lyz|®
i=1 i=1

and the operator L; is linear, closed and surjective, the lemma follows immediately from
Proposition 2.4. O

From Theorem 3.4 and Remark 3.5 we see that if the vector regularization rule & is
chosen “radially”, i.e. @ = aij (with 7 € RY fixed), then the regularized solutions R, ;y,
with R, 7 defined by (13), converge, as @ — 07, to the least-squares solution of the problem

T,z = y that minimizes 7 (||L,z||%, | Loz||?, . .., | Lxyz|?)". Thus, not only convergence is
guaranteed but also a characterization of the limiting least-squares solution is obtained. It
is also important to note that this characterization depends on the radial rule @ = a#n only
through its direction vector 7.

If T is injective and yy € D(TT) then there is only one least-squares solution of T'z = y but
if T is not injective then there are infinitely many. The choice of the vector & is then closely
related to the least-squares solution that we are approximating. The choice of the weights «;
play a fundamental role since, once they are chosen, they determine that the least-squares so-
lution which we are approximating is the one that minimizes 7« (|| L, z||2, | Loz||%, . . ., || Lyz|?)" .
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It is also important to point out that without any “a-prior:” information about properties
of the exact solution, it is not clear which nor how many operators L; one should choose,
neither is clear how one should weight them. In some particular cases, however, know
properties of the exact solution may provide a hint. In image restoration, for instance, if it is
known that the exact solution is “blocky” then it seems reasonable to use a combination of a
classical penalizer by taking L; = I and one more appropriate for capturing and preserving
discontinuities, for instance Ly = V.

3.2 Convergence with differentiable vector regularization rules

In the previous subsection we proved that for each radial direction, given by a unit vec-
tor 77, of the vector regularization rule a(a) = a7j, the corresponding regularized solutions
converge to the least-squares solution which minimizes 7+ (|| Lz ||2, | Lsx||?, . . ., || Lyz|[?)" =
SN ni || Liz|)*. Note in this case that 49(0*) = 4j. This observation point us to conjecture
that it is precisely the direction of the vector regularization rule at @ = 0T (when it exists)
what determines the limiting least-squares solution. In the next theorem we shall extend
the result of Theorem 3.1 to the case of vector regularization rules which are differentiable
at the origin and prove the above conjecture by the affirmative.

Let X, Y, 21,2, ..., 2y, Z, D, L, Ly, T, T), L}, T}, and B, all as defined in the pre-
vious section and satisfying the same properties.

Theorem 3.7. Let d(a) = (a (), a(a), ... ;ay(a))? be the parameterization of a curve in
RY such that &(c) converges to zero as o approaches zero from the right, and assume that
a—)
there exists the right derivative &'(0%) = g(a) of d(a) at zero, d'(0%) # 0 and let
@ |a=0+
.. a'(07) .S
n= m. Let {ga} be a spectral reqularization method such that
99a(N) . ,
5 exists for every a in a right neighborhood of zero, a.e. for A € (0,00) (14)
!
and
0Ga(N) 1 ,
=0 | — ) uniformly for A\ > 0. (15)
Ja o?

Define Ry : Y — X as

Raw = T) + L;Lﬁgw(B;; B;)B:, (16)

* - * * * T
where for z € Z, Gawy(BiB3)2 = ([gay) (ByBa)2l1; oy (By Ba)2las -+ [Gapo (By Ba)2lw) -
Then Rga ts a family of reqularization operators for T, thﬁ- Moreover, for every y € D(thLﬁ)
there holds lim+ Rayy =T}, y.

a—0 n

Proof. For any fixed i = 1,2,..., N, define ¥ = ¥(a) = an; ||&’(07)]|| 77. Clearly 7 is a radial
vector regularization rule and [|7]| = am; [|@’(0%)||. Then, from the definitions of Rz in
(16) and R, 7 in (13), and by virtue of Theorem 3.4, one can immediately see that in order
to prove this theorem it is sufficient to show that for every ¢ = 1,2,..., N, there holds

(G (B3 Bo)2), = o (BiBo)2| =% 0, ¥ 2 € 2. (17)

1
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Let then {EfﬁBﬁ} be the spectral family associated to the selfadjoint operator BB
Note that for z € Z and for any 7, 1 <17 < N, we have that

* * 2 > ByB% 2
H<9ai<a>(BﬁBﬁ)Z—gamHaf(mH(BﬁBﬁ)Z), o< ‘/ <9ai<a>(>\) —gamH&/mH(A)) dE\" "z
1z 0 z
ee 2 BB |2
[ (00 = G oo )| BT
0 zZ
(18)

On the other hand, since the family of functions {g,} constitutes a spectral regularization
method and @(0") = 0, we have that

a—0T 1 1 .
Goy(ar(A) — gam||5'(0+)|’()\) — IS 0, VA>0,Vi=1,2... N (19)
a'(0*
and on the other hand, since d(«) is differentiable at a = 0" and 77 = T@on’ we have
a
that @(a) = a ||@(0%)]| 7+ G(c) where ”5(&)“ = O(a?). Then for every o >0, A >0

go‘i(D‘)()\) - gomi 6/(0+)||()\> = gani &/(0+)||+ﬁi(a)()\) - gani

_ ( 9ga(N)

a'(ot) || ()‘)

Oa

a=¢§;

) Bi(a), (by (14) and the Mean Value Theorem)

(for some &; € IR between an; ||&'(07)]] + Bi(e) and an; [|@(07)]]). It then follows by virtue
of (15) that

vV 6 > 0 (sufficiently small) Jk < oo :

Goyty(A) = gani|‘&/(0+)‘|(/\) <k, VA>0,Yac(0,0).

(20)
Finally, (17) follows from (18), (19) and (20) via the Lebesgue Dominated Convergence
Theorem. [

4 Applications: image restoration with convex combi-
nations of seminorms

The purpose of this section is to present an application to a simple image restoration problem,
of the use of generalized Tikhonov-Phillips methods with penalizers given by linear combi-
nations of squares of seminorms induced by closed operators. The main objective is to show
how the choice of penalizers in a generalized Tikhonov-Phillips functional can significantly
affect the restored image.

The basic mathematical model for image blurring is given by the following Fredholm
integral equation

Kf(w',y)—//Qk(:v,y,:v’,y’)f(w’,y’)dx’dy’—g(x,y), (21)

where  C R? is a bounded domain, f € X = L?(Q) represents the original image, k is the
so called “point spread function” (PSF) and ¢ is the blurred image. For the examples shown
below we used a PSF of “atmospheric turbulence” type, i.e. we chose k to be gaussian:

k(l’, Y, xla yl) = (271'0-6-)_1 exp (_# (iL‘ - $,)2 - # (y - y/>2) ) (22)
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with ¢ = & = 6. It is well known ([3]) that with this PSF the operator K in (21) is
compact with infinite dimensional range and therefore KT, the Moore-Penrose inverse of K,
is unbounded. Generalized Tikhonov-Phillips methods with different penalizers where used
to obtain regularized solutions of the problem

Kf=g. (23)

For the two numerical examples that follow, problem (23) was discretized in the usual way
building the matrix associated to the operator K by imposing periodic boundary conditions
(see [6]). The blurred data g was further contaminated with a 1% a gaussian noise (that
is with a standard deviation of the order of 1% of ||g||_). Mainly due to computational
restrictions, in both cases the size of the images considered is 100 x 100 pixels.

Example 4.1. Figure 1 shows the original image and the blurred noisy image which
constitutes the data for the inverse problem.

(a) (b)
Figure 1: (a) Original image; (b) blurred noisy image.

Six different generalized Tikhonov-Phillips methods with penalizers as in (9) given by
W(w) = a(wl|Liz|® + (1 - w) || Lz|*) (24)

with 0 < w < 1, were used to restore f. In all cases the value of the regularization parameter
a was computed by means of the L-curve method ([5], [7]).

Figures 2(a) and 2(b) show the restored images obtained with the classical Tikhonov-
Phillips methods of orders zero and one, respectively, corresponding to the choices of w = 1,
Li=1,Ly=Vand w=0, Ly =1, Ly =V in (24), respectively.

Figures 3(a)-(d) were obtained using in all cases Ly = I, Ly = V and four different values
of the weight parameter w in (24).

Although some minor differences in the restorations can be observed by simple inspection
of the images (measured by the “eyeball norm”), the Improved Signal-to-Noise Ratio (ISNR)

defined as )
ISNR = 10log,, ( lg = /e )
1 fa = fll7

(where F' denotes the Frobenius norm and f, is the restored image obtained with regular-
ization parameter o) was computed in order to have an objective parameter to measure and
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(a) (b)

Figure 2: Restored images; (a) Tikhonov 0 (w = 1.0), a = 0.0167; (b) Tikhonov 1 (w = 0.0),
a = 0.0865.

compare the quality of all restored images. Table 1 shows the ISNR values corresponding to
the six regularization methods used. It is interesting to note that all four combined methods
corresponding to non-trivial choices of weight parameters w (0 < w < 1), show an improve-
ment in the ISNR value, both in regard to the pure Tikhonov 0 (w = 1) and to the pure
Tikhonov 1 (w = 0) methods.

Method w=10 | w=00 |w=005] w=01 | w=02 | w=0.3
Fig. 2(a) | Fig. 2(b) | Fig. 3(a) | Fig. 3(b) | Fig. 3(c) | Fig. 3(d)
ISNR (dB) | 2.5121 2.6761 2.7464 2.7583 2.7497 2.7325

Table 1: ISNR values of the restored images for Example 4.1

Example 4.2. Figures 4(a)-(b) show the original and degraded image, respectively,
for this example, while figures 5(a)-(b) show the restorations obtained with the classical
Tikhonov-Phillips methods of order zero and one, respectively. The restorations obtained
with the combined methods by using penalizers as in (24) with weight values w = 0.05,
w = 0.1, w = 0.2 and w = 0.3 are presented in Figures 6(a)-(d). For these six restorations
the ISNR values are presented in Table 2. Once again, we observe that the ISNR values of
all four non-trivially combined methods are larger than both of those corresponding to the
single “pure” methods. The improvements of the combined restorations for this example is
even better than those obtained in Example 4.1. It is reasonable to think that this is so
due to the fact that although the original image in Example 4.1 is mainly “blocky”, the
image for Example 4.2 presents both regions of blocky type and regions with nonconstant
but regular intensity gradients, for which one could in fact expect that a combined method
will do a much better job than any of the pure methods applied separately. Although this
can be though of as a purely empirical and somewhat intuitive observation, it points to an
important aspect of the theory which deserves further research, namely, that regarding an
“optimal” choice of the weight parameters «; in the functional (9).
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(a) (b)
(c)

Figure 3: Restorations with combined Tikhonov 0-1 methods; (a) w = 0.05, @ = 0.0577; (b)
w=0.1, « = 0.0463; (¢) w = 0.2, « = 0.0352; (d) w = 0.3, o = 0.0295.

o

a (b)

(d)

Figure 4: (a) Original image; (b) blurred noisy image.
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(a) (b)
Figure 5: Restored images; (a) Tikhonov 0 (w = 1.0), a = 0.0121; (b) Tikhonov 1 (w = 0.0),

a = 0.1110.

(a) (b)

(c) (d)
Figure 6: Restorations with combined Tikhonov 0-1 methods; (a) w = 0.05, a = 0.0452; (b)
w=0.1, « =0.0338; (¢) w=0.2, « =0.0252; (d) w = 0.3, « = 0.0211.
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Method w=10 | w=00 |w=005| w=01 | w=02 | w=0.3
Fig. 5(a) | Fig. 5(b) | Fig. 6(a) | Fig. 6(b) | Fig. 6(c) | Fig. 6(d)
ISNR (dB) | 2.2551 2.3776 2.8711 2.9755 2.9643 2.8925

Table 2: ISNR values of the restored images for Example 4.2

5 Conclusions and open issues

In this article we considered regularized solutions of linear inverse ill-posed problems obtained
with generalized Tikhonov-Phillips functionals with penalizers given by linear combinations
of seminorms induced by closed operators. Convergence of the regularized solutions was
proved when the vector regularization rule approaches the origin through appropriate radial
and differentiable paths. Characterizations of the limiting solutions were given.

In the previous sections it was proved that when a family of closed operators is used to
construct a spectral regularization method as given in (13) or (16), provided that the vector
regularization rule is differentiable at the origin, it is the vector 77 of relative weights induced
by direction of the rule at the origin, what defines the limiting least-squares solution. This is
particularly clear for the Tikhonov-Phillips method where the limiting least-squares solution
is that which minimizes the convex combination of the squares of the seminorms induced by
those closed operators, namely 7 (|| Lyz||?, | Loz||?, . .. | Lyz]|2)" = SN m; || Liz||. Nothing
is said nor known, however, about how these weight values 7; (and therefore the limiting
direction of the vector regularization rule) should be chosen. Is there an “optimal” value of
77 (perhaps measure in terms of the ISNR)? If so, is there any way to explicitly find it? The
examples presented in Section 4 show that the quality of the obtained results can greatly
depend on the choice of 7. This is a problem where more research is needed. Certainly,
results in this direction could be of significant relevance in many applied problems.
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