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An Extension Theorem for Besov functions on

metric spaces

Hugo Aimar, Eleonor Harboure and Miguel Marcos ∗

Instituto de Matemática Aplicada del Litoral (CONICET-UNL)
Departamento de Matemática (FIQ-UNL)

Abstract

As the �rst part of a wider program related to traces of Besov func-
tions to sets of lower dimentsion in metric measure spaces, in this note
we prove an extension theorem for Besov functions on general spaces of
homogeneous type.

1 Introduction and Main Result

Given a set X and a subset F , the problem of extending functions from a certain
Banach space B1(F ) of functions de�ned in F to another one B2(X) of functions
de�ned in X naturally arises. This means �nding a bounded linear operator

E : B1(F )→ B2(X),

satisfying that an 'extended' function Ef recovers f when restricted to F .

When F is a closed subset of Rn, in 1934 Whitney developed a method to
de�ne di�erentiable functions in F . This method can adjust to di�erent notions
of smoothness. The strategy consists in partitioning the complement of F in
Whitney cubes with diameter comparable to its distance to F , then with those
cubes building a partition of unity and use it to build the extension operator.

In [S], Stein de�nes Besov spaces in Rn for 0 < α < 1 and 1 ≤ p, q ≤ ∞,
Λp,qα , as those f ∈ Lp with

‖f‖p +

(ˆ ∞
0

(t−αωpf(t))q
dt

t

)1/q

<∞

where ωpf(t) = sup|h|<t ‖∆hf‖p is the modulus of continuity, and with the
usual modi�cation for q =∞.
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For d-sets F of Rn, Jonsson and Wallin (see [JW]) de�ne the Besov space
Bp,qα (F ) as those functions f ∈ Lp(F,Hd) with(∑

k

2kα
ˆ
F

 
F∩B(s,2−k)

|f(s)− f(t)|pdHd(t)dHd(t)

)1/q

<∞

and the usual modi�cation for q =∞. HereHd denotes Hausdor� d-dimensional
measure.

They then prove that there exists an extension operator

E : Bp,qβ (F )→ Λp,qα ,

where 0 < α = β + (n− d)/p < 1.

We prove a similar extension theorem for a certain kind of Besov Spaces
on metric measure spaces. Instead of asking for dimensions n and d for the
space and the subspace, we ask for a doubling condition in both spaces, and the
existence of a 'local di�erence of dimensions' n − d. The precise statement of
the theorem is as follows:

Theorem 1.1. Let (X, d,m) be a doubling metric measure space, and let F ⊂ X
be closed with m(F ) = 0. If µ is a nontrivial Borel measure with support F which
is doubling for balls centered in F , and if there exists γ > 0 and R0 > 0 such
that

m(B)

µ(B)
∼ rγB (1)

for balls B centered in F with radius rB < R0, then there is an extention
operator E for functions f ∈ L1

loc(F, µ) that satis�es, for β > 0, 1 ≤ p <∞ and
1 ≤ q ≤ ∞

E : Bβp,q(F, µ)→ Bαp,q(X,m)

for α = β + γ/p if β < 1− γ/p and 1 ≤ q ≤ ∞ or α = 1 if β = 1 and q =∞.

Certainly, Theorem 1.1 contains the classical result in Theorem 1, Chapter
VI from [JW] for the case 0 < α < 1.

To ilustrate our result, we observe that the cases in which X and F are
Ahlfors n-regular and d-regular, respectively, satisfy the quotient realtion 1 and
therefore the theorem applies. In another context, if F is a doubling measure
space and Y si Ahlfors γ-regular, the spaces X = F × Y and F also satisfy the
hypotheses, if we take the product metric and the product measure for X.

In section 2 we introduce the basic terminology and some auxiliary results
needed to prove the theorem, and in section 3 we present our proof.

2 Preliminaries and auxiliary results

We say that (X, d,m) is a metric measure space if (X, d) is a metric space
and m is a Borel measure on X that is positive and �nite for all balls on X.
Furthermore, we say that m is doubling if there exists a constant A such that

m(2B) ≤ Am(B),
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where B is any ball in X and κB is the ball with the same center and κ times
the radius.

Throughout this paper, constants are labeled C or c, and their speci�c value
can change from line to line. We say that two objects (functions or numbers)
r, s are equivalent, r ∼ s, if there exist constants c, C > 0 such that cr ≤ s ≤ Cr.

In Rn, one can check that the modulus of continuity satis�es, for 1 ≤ p <∞,

ωpf(t) ∼

( 
B(0,t)

‖∆hf‖ppdh

)1/p

,

and, as [GKS] show, changing the order of integration,

 
B(0,t)

‖∆hf‖ppdh =

ˆ
Rn

 
B(x,t)

|f(y)− f(x)|pdydx.

Using this, one can de�ne (as [GKS] do) non-homogeneous Besov spaces
Bαp,q, α > 0, in an arbitrary metric measure space (X, d,m) as those f ∈ Lp(X)
with

‖f‖p +

(ˆ ∞
0

(t−αEpf(t))q
dt

t

)1/q

<∞,

where the modulus of continuity is now de�ned as

Epf(t) =

(ˆ
X

 
B(x,t)

|f(y)− f(x)|pdm(y)dm(x)

)1/p

(with the usual modi�cations if p =∞ or q =∞).

For other de�nitions of Besov Spaces in metric spaces and their relationships,
see [HS], [MY] and [GKS]. One equivalent form we need is the following:

Lemma 2.1. If m is doubling,

‖t−αEpf(t)‖Lq((0,∞), dtt ) ∼
∥∥∥(2lαEpf(2−l)

)
l∈Z

∥∥∥
lq(Z)

.

Proof. Assume �rst 1 ≤ p <∞. For 2−l−1 ≤ t < 2−l, as m is doubling we have
that

Epf(t)p =

ˆ
X

 
B(x,t)

|f(y)− f(x)|pdm(y)dm(x) ≤

≤
ˆ
X

1

m(B(x, 2−l−1))

ˆ
B(x,2−l)

|f(y)− f(x)|pdm(y)dm(x) ≤

≤ A
ˆ
X

 
B(x,2−l)

|f(y)− f(x)|pdm(y)dm(x) = AEpf(2−l)p,

and similarly

Epf(t)p ≥ 1

A
Epf(2−l−1)p.
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We also have that

E∞f(2−l−1) ≤ E∞f(t) ≤ E∞f(2−l).

Finally, as we have

c2α(l+1)Epf(2−(l+1)) ≤ t−αEpf(t) ≤ C2αlEpf(2−l),

we get the conclusion.

If m is doubling, then (X, d) satis�es the weak homogeneity property and
the following two results hold (see [A]):

Lemma 2.2. Whitney type covering + partition of unity. Let (X, d) be
a metric space with the weak homogeneity property. Let F be a closed subset
of X and Ω = {x ∈ X : 0 < d(x, F ) < 1}. Then there exists a (countable)
collection {Bi = B(xi, ri)}i of balls satisfying

1. {Bi} are pairwise disjoint;

2. ∪i3Bi = Ω;

3. 6Bi ⊂ Ω for each i;

4. 6ri ≤ d(x, F ) ≤ 18ri for each x ∈ 6Bi, for each i;

5. for each i there exists yi ∈ F satisfying d(xi, yi) < 18ri;

Furthermore, there exists a collection (ϕi)i of real functions satisfying

1. 3Bi ⊂ suppϕi ⊂ 6Bi;

2. 0 ≤ ϕi ≤ 1;

3.
∑
i ϕi = χΩ;

4. ϕi ≡ 1 in Bi;

5. for each i, |ϕi(x)− ϕi(y)| ≤ C
ri
d(x, y) with C independent of i.

Lemma 2.3. Bounded overlap. Let (X, d) be a metric space with the weak
homogeneity property and let 1 ≤ a < b, κ > 1. There exists a constant C such
that, if {Bi = B(xi, ri)}i is a family of disjoint balls, and r > 0,∑

i:ar≤ri≤br

χκBi ≤ C.

We also need the following discrete version of Hardy's Inequality:

Lemma 2.4. Hardy's Inequality. Let (bn) be a sequence of nonnegative
terms, γ > 0 and a > 0, then there exists C > 0 such that

∞∑
n=0

2−na

(
n∑
k=0

bk

)γ
≤ C

∞∑
n=0

2−nabγn.

Proof. If γ ≤ 1, the result is trivial:

∞∑
n=0

2−na

(
n∑
k=0

bk

)γ
≤
∞∑
n=0

n∑
k=0

2−nabγk =
∞∑
k=0

bγk2−ka
∞∑
n=k

2−(n+k)a = C
∞∑
k=0

bγk2−ka.

See [L] for the case γ > 1.
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3 Proof of Theorem 1.1

Without loss of generality, we assume all balls used in the proof satisfy 1, this
can always be done by modifying the set Ω used in Whitney's partition.

Let us �rst de�ne the extension operator: let {Bi, ϕi}i be as in 2.2. If
f ∈ L1

loc(F, µ) and x ∈ X\F , we de�ne

Ef(x) =
∑
i

ϕi(x)

 
18Bi

fdµ.

Extension part.

First we need to check that Ef is an extension of f , i.e. that Ef |F = f .
This is, µ-almost every point in F is an m-Lebesgue point of Ef , and for those
points Ef(x) = f(x).

Let t0 ∈ F and r > 0. As

Ef(x)− f(t0) =
∑
i

ϕi(x)

 
18Bi

(f(t)− f(t0))dµ(t),

we have

|Ef(x)− f(t0)| ≤
∑
i

χ6Bi(x)

 
18Bi

|f(t)− f(t0)|dµ(t)

and for d(x, F ) ∼ 2−k, d(x, t0) < r,

|Ef(x)− f(t0)| ≤
ˆ
F

|f(t)− f(t0)|

 ∑
ri∼2−k

χ18Bi(t)
χ6Bi(x)

µ(18Bi)

 dµ(t) ≤

≤
ˆ
B(t0,r+c2−k)

|f(t)− f(t0)|

 ∑
ri∼2−k

χ18Bi(t)
χ18Bi(x)

µ(18Bi)

 dµ(t) ≤

≤
ˆ
B(t0,cr)

|f(t)− f(t0)|

 ∑
ri∼2−k

χ18Bi(t)
χ18Bi(x)

µ(18Bi)

 dµ(t);

then by bounded overlap,

ˆ
B(t0,r)

|Ef(x)−f(t0)|dm(x) ≤
∑

2−k≤cr

ˆ
x∈B(t0,r),d(x,F )∼2−k

|Ef(x)−f(t0)|dm(x) ≤

≤
∑

2−k≤cr

ˆ
B(t0,cr)

|f(t)− f(t0)|

 ∑
ri∼2−k

χ18Bi(t)
m(18Bi)

µ(18Bi)

 dµ(t) ≤

≤ C

 ∑
2−k≤cr

2−kγ

ˆ
B(t0,cr)

|f(t)−f(t0)|dµ(t) ≤ Crγ
ˆ
B(t0,cr)

|f(t)−f(t0)|dµ(t) ≤
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≤ Cm(B(t0, cr))

µ(B(t0, cr))

ˆ
B(t0,cr)

|f(t)− f(t0)|dµ(t).

In other words,
 
B(t0,r)

|Ef(x)− f(t0)|dm(x) ≤ C
 
B(t0,cr)

|f(t)− f(t0)|dµ(t),

and as the right side of the inequality tends to zero as r → 0 for µ−almost every
t0 ∈ F (because µ is doubling and f ∈ L1

loc(F )), so does the left side and we
have Ef(t0) = f(t0) for µ−almost every t0 ∈ F .

Lp part.

We need to check now that there exists C > 0 such that ‖Ef‖p,m ≤ C‖f‖p,µ
for every f ∈ Lp(F, µ).

We have

|Ef(x)| =

∣∣∣∣∣∑
i

ϕi(x)

 
18Bi

fdµ

∣∣∣∣∣ ≤∑
i

χ6Bi(x)

( 
18Bi

|f |pdµ
)1/p

,

and so by Hölder's inequality,

|Ef(x)|p ≤ C
∑
i

χ6Bi(x)

 
18Bi

|f |pdµ ≤ C
ˆ
F

|f(t)|p
(∑

i

χ18Bi(t)
χ18Bi(x)

µ(18Bi)

)
dµ(t).

Once again by bounded overlap

ˆ
X

|Ef(x)|pdm(x) ≤ C
ˆ
F

|f(t)|p
(∑

i

χ18Bi(t)
m(18Bi)

µ(18Bi)

)
dµ(t) ≤

≤ C
ˆ
F

|f(t)|p
∑

k

∑
ri∼2−k

χ18Bi(t)
m(18Bi)

µ(18Bi)

 dµ(t) ≤

≤ C
ˆ
F

|f(t)|p
(∑

k

2−kγ

)
dµ(t) ≤ C‖f‖pp,µ.

Besov part.

For this last part, we need to check that there exists C > 0 such that
[Ef ]Bαp,q(X,m) ≤ C[f ]Bβp,q(F,µ) for every f ∈ B

β
p,q(F, µ).

We will �rst prove that

EpEf(2−l)p ≤ C2−lp
∑
k≤l

2k(p−γ)Epf(c2−k)p + C2−lγEpf(c2−l)p.

For this, we split EpEf(2−l)p in two parts:

EpEf(2−l)p ≤
ˆ
d(x,F ).2−l

 
B(x,2−l)

|Ef(x)− Ef(y)|pdm(y)dm(x)+
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+

ˆ
d(x,F )&2−l

 
B(x,2−l)

|Ef(x)− Ef(y)|pdm(y)dm(x) = I + II.

For II, d(x, F ) ∼ 2−k for some k ≤ l, and we can write

Ef(x)− Ef(y) =
∑
i

(ϕi(x)− ϕi(y))

 
18Bi

 
B(x,2−k)

f(s)− f(t)dµ(t)dµ(s),

and for x ∈ 3Bj , rj ∼ 2−k,

ˆ
3Bj

 
B(x,2−l)

|Ef(x)− Ef(y)|pdm(y)dm(x) ≤

≤ C
ˆ
3Bj

 
B(x,2−l)

∑
i

|ϕi(x)−ϕi(y)|p
 
18Bi

 
B(x,2−k)

|f(s)−f(t)|pdµ(t)dµ(s)dm(y)dm(x) ≤

≤ C
ˆ
3Bj

 
B(x,2−l)

∑
i:x∨y∈suppϕi

d(x, y)pr−pi

 

cBj

 

B(s,c2−k)

|f(s)−f(t)|pdµ(t)dµ(s)dm(y)dm(x) ≤

≤ C2kp2−lp
m(3Bj)

µ(cBj)

ˆ

cBj

 

B(s,c2−k)

|f(s)− f(t)|pdµ(t)dµ(s) ≤

≤ C2kp2−lp2−kγ
ˆ

cBj

 

B(s,c2−k)

|f(s)− f(t)|pdµ(t)dµ(s),

so now we add up in j : rj ∼ 2−k and k ≤ l, to get

II ≤
∑
k≤l

∑
rj∼2−k

ˆ
3Bj

 
B(x,2−l)

|Ef(x)− Ef(y)|pdm(y)dm(x) ≤

≤ C2−lp
∑
k≤l

2kp2−kγ
ˆ
F

 ∑
rj∼2−k

χcBj (s)

  

B(s,c2−k)

|f(s)− f(t)|pdµ(t)dµ(s) ≤

≤ C2−lp
∑
k≤l

2kp2−kγEpf(c2
−k)p.

Now for I, as d(x, F ) . 2−l and d(x, y) < 2−l, we have d(y, F ) . 2−l and there
exist k,m ≥ l such that d(x, F ) ∼ 2−k, d(y, F ) ∼ 2−m and, as we can write

Ef(x)− Ef(y) =
∑
i

∑
j

ϕi(x)ϕj(y)

 
18Bi

 
18Bj

f(s)− f(t)dµ(t)dµ(s),

we have that
|Ef(x)− Ef(y)|p ≤

≤ C
∑

ri∼2−k

∑
rj∼2−m

χ6Bi(x)χ6Bj (y)

 
B(x,c2−k)

 
B(y,c2−m)

|f(s)− f(t)|pdµ(t)dµ(s) ≤

≤ C
 
B(x,c2−k)

 
B(y,c2−m)

|f(s)− f(t)|pdµ(t)dµ(s).

Integrating �rst with respect to y,
ˆ
y∈B(x,2−l),d(y,F )∼2−m

|Ef(x)− Ef(y)|pdm(y) ≤

7

Prep
rin

t

 
IMAL PREPRINT # 2014-0015 

                         ISSN 2451-7100 
Publication date: July 04, 2014



≤ C
 
B(x,c2−k)

ˆ
y∈B(x,2−l),d(y,F )∼2−m

 
B(y,c2−m)

|f(s)− f(t)|pdµ(t)dm(y)dµ(s),

but ˆ

y∈B(x,2−l),d(y,F )∼2−m

 

B(y,c2−m)

|f(s)− f(t)|pdµ(t)dm(y) ≤

≤
∑

rh∼2−m

ˆ

B(x,2−l)∩cBh

 

B(y,c2−m)

|f(s)− f(t)|pdµ(t)dm(y) ≤

≤ C
ˆ

B(x,2−l+c2−m)

|f(s)−f(t)|p
ˆ

B(t,c2−m)

1

µ(B(y, c2−m))

 ∑
rj∼2−m

χaBj (y)

 dm(y)dµ(t) ≤

≤ C2−mγ
ˆ

B(x,c2−l)

|f(s)− f(t)|pdµ(t),

so we get ˆ
y∈B(x,2−l),d(y,F )∼2−m

|Ef(x)− Ef(y)|pdm(y) ≤

≤ C2−mγ
 

B(x,c2−k)

ˆ

B(x,c2−l)

|f(s)− f(t)|pdµ(t)dµ(s);

and now integrating in x,∑
ri∼2−k

ˆ
3Bi

1

m(B(x, 2−l))

ˆ

y∈B(x,2−l),d(y,F )∼2−m

|Ef(x)− Ef(y)|pdm(y)dm(x) ≤

≤ C2−mγ
∑

ri∼2−k

ˆ

3Bi

2lγ

µ(B(x, c2−l))

 

B(x,c2−k)

ˆ

B(x,c2−l)

|f(s)− f(t)|pdµ(t)dµ(s)dm(x) ≤

≤ C2−mγ2lγ
ˆ

F

 

B(s,c2−l)

|f(s)− f(t)|p

µ(B(s, c2−k))

ˆ

B(s,c2−k)

 ∑
ri∼2−k

χ3Bi(x)

 dm(x)dµ(t)µ(s) ≤

≤ C2−mγ2lγ2−kγ
ˆ
F

 
B(s,c2−l)

|f(s)− f(t)|pdµ(t)µ(s) = C2−mγ2lγ2−kγEpf(c2
−l)p.

Finally, adding in k,

I ≤
∑
k≥l

ˆ
d(x,F )∼2−k

 
B(x,2−l)

|Ef(x)− Ef(y)|pdm(y)dm(x) ≤

≤ C2lγEpf(2
−l)p

∑
k≥l

∑
m≥l

2−mγ2−kγ ≤ C2−lγEpf(c2
−l)p.

Now, we have to consider each case separately. For q < ∞ and α = β + γ/p, by
Hardy's Inequality (ν = q/p) we have that∑

l

2lαq(EpEf(2−l)p)q/p ≤

≤ C
∑
l

2lβq2lγq/p2−lq

∑
k≤l

2k(p−γ)Epf(c2
−k)p

q/p

+C
∑
l

2lβq2lγq/p2−lγq/pEpf(c2
−l)q ≤

≤ C
∑
l

2lβq2lγq/p2−lq2l(q−γq/p)Epf(c2
−l)q + C

∑
l

2lβq2lγq/p2−lγq/pEpf(c2
−l)q ≤
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≤ C
∑
l

2lβqEpf(c2
−l)q.

For q =∞ and α = β + p/q < 1,

2−lp
∑
k≤l

2kp2−kγEpf(c2
−k)p ≤ 2−lp

(
sup
k

2kβpEpf(c2
−k)p

)∑
k≤l

2kp2−kγ2−kβp

 ≤
≤ C2−lp2l(1−α)p

(
sup
k

2kβpEpf(c2
−k)p

)
= C2−lαp

(
sup
k≤l

2kβpEpf(c2
−k)p

)
,

so
sup
l

2lαpEpEf(2−l)p ≤ C sup
l

2lβpEpf(c2
−l)p.

Finally, for q =∞ and α = β = 1,

sup
l

2lpEpEf(2−l)p ≤ C sup
k

2kpEpf(c2
−k)p + C sup

l
2lpEpf(c2

−l)p.

�

References

[A] Aimar, H. Distance and measure in Analysis and PDE, Birkhäuser Basel, sub-
mitted for publication.

[GKS] Gogatishvili, Amiran; Koskela, Pekka; Shanmugalingam, Nageswari. Interpo-
lation properties of Besov spaces de�ned on metric spaces. (English summary)
Math. Nachr. 283 (2010), no. 2, 215-231.

[HS] Han, Y. S.; Sawyer, E. T. Littlewood-Paley theory on spaces of homogeneous

type and the classical function spaces. Mem. Amer. Math. Soc. 110 (1994), no.
530, vi+126 pp.

[JW] Jonsson, Alf; Wallin, Hans. Function spaces on subsets of Rn. Math. Rep. 2
(1984), no. 1, xiv+221 pp.

[L] Leindler, L. Generalization of inequalities of Hardy and Littlewood. Acta Sci.
Math. (Szeged) 31 1970 279-285.

[MY] Müller, Detlef; Yang, Dachun; A di�erence characterization of Besov and

Triebel-Lizorkin spaces on RD-spaces. (English summary) Forum Math. 21
(2009), no. 2, 259-298.

[S] Stein, E. Singular integrals and di�erentiability properties of functions, Prince-
ton University Press (1971).

E-mail address: haimar@santafe-conicet.gov.ar

E-mail address: harbour@santafe-conicet.gov.ar

E-mail address: mmarcos@santafe-conicet.gov.ar

9

Prep
rin

t

 
IMAL PREPRINT # 2014-0015 

                         ISSN 2451-7100 
Publication date: July 04, 2014


	Portada PP
	2014-0015
	cover
	paper1




