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Abstract

As the first part of a wider program related to traces of Besov func-
tions to sets of lower dimentsion in metric measure spaces, in this note
we prove an extension theorem for Besov functions on general spaces of
homogeneous type.

1 Introduction and Main Result

Given a set X and a subset F', the problem of extending functions from a certain
Banach space By (F') of functions defined in F' to another one By (X) of functions
defined in X naturally arises. This means finding a bounded linear operator

E4 Bl(F) — BQ(X),
satisfying that an ’extended’ function £ f recovers f when restricted to F'.

When F is a closed subset of R™, in 1934 Whitney developed a method to
define differentiable functions in F'. This method can adjust to different notions
of smoothness. The strategy consists in partitioning the complement of F' in
Whitney cubes with diameter comparable to its distance to F', then with those
cubes building a partition of unity and use it to build the extension operator.

In [S], Stein defines Besov spaces in R™ for 0 < o < 1 and 1 < p,q < oo,
AP as those f € LP with

i+ ([ enron®) " <o

where wy f(t) = supjp < [[Anfllp is the modulus of continuity, and with the
usual modification for ¢ = oc.
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For d-sets F' of R™, Jonsson and Wallin (see [JW]) define the Besov space
BP4(F) as those functions f € LP(F,H?) with

1/a
ka _ P d d e
(gz |5 AN C R GO <t>) <

and the usual modification for ¢ = co. Here H¢ denotes Hausdorff d-dimensional
measure.

They then prove that there exists an extension operator
& Bg’q(F) — AP
where 0 <a=p+(n—d)/p<1.

We prove a similar extension theorem for a certain kind of Besov Spaces
on metric measure spaces. Instead of asking for dimensions n and d for the
space and the subspace, we ask for a doubling condition in both spaces, and the
existence of a ’local difference of dimensions’ n — d. The precise statement of
the theorem is as follows:

Theorem 1.1. Let (X, d, m) be a doubling metric measure space, and let F C X
be closed with m(F) = 0. If u is a nontrivial Borel measure with support F which
is doubling for balls centered in F, and if there exists v > 0 and Ry > 0 such
that (B)

ue v

wB) "' W
for balls B centered in F with radius rg < Ry, then there is an extention
operator & for functions f € L}, (F, ) that satisfies, for >0, 1 < p < oo and
1<g¢g<

& : By (F,u) — BS (X, m)

fora=0+vy/piff<l—v/pandl <g<ocoora=1ifp=1andq= .

Certainly, Theorem 1.1 contains the classical result in Theorem 1, Chapter
VI from [JW] for the case 0 < o < 1.

To ilustrate our result, we observe that the cases in which X and F are
Ahlfors n-regular and d-regular, respectively, satisfy the quotient realtion 1 and
therefore the theorem applies. In another context, if F' is a doubling measure
space and Y si Ahlfors y-regular, the spaces X = F x Y and F also satisfy the
hypotheses, if we take the product metric and the product measure for X.

In section 2 we introduce the basic terminology and some auxiliary results
needed to prove the theorem, and in section 3 we present our proof.

2 Preliminaries and auxiliary results

We say that (X,d,m) is a metric measure space if (X,d) is a metric space
and m is a Borel measure on X that is positive and finite for all balls on X.
Furthermore, we say that m is doubling if there exists a constant A such that

m(2B) < Am(B),
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where B is any ball in X and B is the ball with the same center and x times
the radius.

Throughout this paper, constants are labeled C or ¢, and their specific value
can change from line to line. We say that two objects (functions or numbers)

r, s are equivalent, r ~ s, if there exist constants ¢, C' > 0 such that er < s < Cr.

In R™, one can check that the modulus of continuity satisfies, for 1 < p < oo,

1/p
wpf(t) ~ (7[3 o ||Ahf||zdh> ,

and, as [GKS] show, changing the order of integration,

A, FlPdh = Y -
£ Jsdgan= [ f 1) spasas

)

Using this, one can define (as [GKS] do) non-homogeneous Besov spaces
B%,, a > 0, in an arbitrary metric measure space (X, d, m) as those f € L?(X)

P:q’
with »
o dt
o+ ([T BrrT) <o

where the modulus of continuity is now defined as

1/p
B, f(t) = ( /X ]i IR f(w)lpdm(y)dm(w)>

(with the usual modifications if p = co or ¢ = 0).

For other definitions of Besov Spaces in metric spaces and their relationships,
see [HS], [MY] and [GKS]. One equivalent form we need is the following:

Lemma 2.1. If m is doubling,

[t Epf ()l La(0,00), 22y ~ H(2laEpf(2_l))zez 0@

Proof. Assume first 1 < p < co. For 2771 <t < 27! as m is doubling we have
that

E,f(t) = /X ][B )~ @ dmn(z) <

: Pdm(y)dm(z
S/me(x,z—l—l))/Bw_l)lf(y)f(w)l dm(y)dm(z) <

— f(z)|Pdm(y)dm(z) = —hyp
<af £ 1@ f@Pim)in) = ABP.

and similarly

(1) > 1B, (27,
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We also have that
Exf(2771) < Bwof(t) < B f(27).
Finally, as we have
2TV B, f(270T)) <70 B, f(1) < C2 B, f(27),
we get the conclusion. O

If m is doubling, then (X, d) satisfies the weak homogeneity property and
the following two results hold (see [A]):

Lemma 2.2. Whitney type covering + partition of unity. Let (X,d) be
a metric space with the weak homogeneity property. Let F be a closed subset
of X and Q@ = {x € X : 0 < d(x,F) < 1}. Then there exists a (countable)
collection {B; = B(x;,7;)}: of balls satisfying

1. {B;} are pairwise disjoint;

2. Ui3B; = Q;

3. 6B; C Q for each i;

4. 6r; <d(x, F) < 18r; for each x € 6B;, for each i;

5. for each i there exists y; € F satisfying d(x;,y;) < 18r;;
Furthermore, there exists a collection (¢;); of real functions satisfying

1. 3B; C suppy; C 6B;;

2.0<¢; <1;

3. 22 = Xa;

4. p; =1 1in By;

(3

. for each i, |pi(x) — vi(y)] < %d(x,y) with C independent of i.

Lemma 2.3. Bounded overlap. Let (X,d) be a metric space with the weak
homogeneity property and let 1 < a < b, Kk > 1. There ezists a constant C such
that, if {B; = B(x;,7;)}: is a family of disjoint balls, and r > 0,

Z XkB; S C.
iar<r;<br
We also need the following discrete version of Hardy’s Inequality:

Lemma 2.4. Hardy’s Inequality. Let (b,) be a sequence of monnegative
terms, v > 0 and a > 0, then there exists C' > 0 such that

o0 n v oo
> one (Z bk> <Cy 27
n=0 k=0 n=0

Proof. If v < 1, the result is trivial:

oo n v oo n oo (e o) oo
> 2 (Z bk) <D N oy =Y pjathe Y S amntRe = 0y “praThe
n=0 k=0 k=0 n=~k k=0

n=0 k=0

See [L] for the case v > 1. O
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3 Proof of Theorem 1.1

Without loss of generality, we assume all balls used in the proof satisfy 1, this
can always be done by modifying the set €2 used in Whitney’s partition.

Let us first define the extension operator: let {B;,¢;}; be as in 2.2. If
f €L} .(F u) and z € X\F, we define

- dp.
Z;so(w) o

Extension part.

First we need to check that £f is an extension of f, i.e. that Ef|r = f.
This is, p-almost every point in F' is an m-Lebesgue point of £ f, and for those

points £ f(x) = f(x).

Let to € F and r > 0. As

£f =S Jng (1) — F(to))dp(t),

we have

Ef(z) — f(to)] < ZX6B ][SB_ | f(t) = f(to)|dp(t)

and for d(x, F) ~ 2% d(z,t9)

£f(x) — f(to)] </ |£(t) — f(to)l ( > xusal X6f8(B))) dp(t) <

ri~2—k

XlsB ( )

X1813 (x) .
< /B(to,w) |f(t) (TZkaB L (ISB, )) du(t);

1N2

then by bounded overlap,

/B o ET@ S i) < E£(2)—(to) dm(x) <

/aceB(to,r),d(m,F)NQk

2—k<er

mlSB)

2—k<er ri~2—k

C ( > 2"”) /B e [F(#)=f(to)|du(t) < Cr / F ()= f (to)|du(t) <

2-k<cr B(to,cr)
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m(B(to,cr))

= C uBlto, )

/B o WO = o)t

In other words,
f I - oz <€ f 150 fto)lduce)
B(to,r) B(to,cr)

and as the right side of the inequality tends to zero as r — 0 for p—almost every
to € F (because p is doubling and f € L, (F)), so does the left side and we
have € f(ty) = f(to) for p—almost every ¢y € F'.

LP part.

We need to check now that there exists C' > 0 such that ||Ef|l,.m < C||f
for every f € LP(F, u).

pp

We have
er@) =S wa) £ s

| )I= Z 18B;

and so by Holder’s inequality,

erl <0 v fispanse [ i (Zm legéj)w»

Once again by bounded overlap

D P m(18BZ)
/X Ef(@)[Pdm(z) < C/F|f(t)\ (ZXlSBi(t)u(wBi)> du(t) <

1/p
< ZX(SBi (z) (]{SB< |fpdu> :

<O [ f®F (Z 2’”) du(t) < CIIf15,.

k

Besov part.

For this last part, we need to check that there exists C' > 0 such that
[gf]Bz‘j‘ﬁq(X,m) < C[f] o (Fyp) for every f € B (F7 M)

We will first prove that

B, £ <027 oM E, f(c27F)P + C27E, f(c27)P.
k<l

For this, we split E,& f(27')P in two parts:

Beseyr< [ jef() - £ Pdm(y)dm(z)+
d(z,F)<2-t JB(z,271)
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+ / f E4(x) — E£(y)|Pdm(y)dim(z) = T+ I1.
d(z,F)22-t JB(z,2-1)

For I1, d(x, F) ~ 27 for some k < [, and we can write

£~ £10) = Seit) =) f 6= S Ons),

and for x € 3B;, rj ~27F

/ f E£(x) — Ef(y)Pdm(y)dim(z) <
3B; JB(z,21)

<Of A Sle@eal ff SO i an @in) <
<cf fB(>Z _d(x,ym f f 1)~ OF du(t)du(s)dm(y) () <

cBj B(s,c27k)

< Cory ) / F 176 = FOPaudns) <

CB] B(s,c27k)
< coPrairgh / F 156 - FOPdutdacs),
cBj B(s,c27F)
so now we add up in j : 7; ~ 27% and k < I, to get

m<y > / ][B IEf(x) = Ef(Y)[Pdm(y)dm(z) <

k<l pjm (z,271)

<cxry oyt [ ( > s ) F o156~ fOPaudns) <

) k
k<l rjev2T B(s,c27k)

< 027N oMM, f(e27 )P
k<l

Now for I, as d(z, F) < 27" and d(z,y) < 27, we have d(y, F) < 27" and there
exist k,m > [ such that d(z, F) ~ 27", d(y, F) ~ 27™ and, as we can write

£1@) =) = SN e@es {6 = fOdu(tydnts).

we have that

£5(x) — EF W <
<O Y wm@enGf, f 156 S <

~2—k P2
riv2T R r 2

<c f 1£(5) — FOP dpu(t)da(s).
B(z,c2—k) J B(y,c2—™)

Integrating first with respect to vy,

/ E£(z) — £ (@)Pdim(y) <
yEB(x,271),d(y,F)~2—m
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<c f / ][ 1F(8) — F()Pda(t)dm (y)du(s),
B(w,c2=F) JyeB(z,271),d(y,F)~2—"™ J B(y,c2=™)
but

/ F 1) = 5P du(oin) <

yeB(x,271),d(y,F)~2~™ B(y,c2~™)

<> Fo16) = P dutdmiy) <

"2 B(@,2—)Ne By, B(y,c2™)

<c [ we-ror [ m< > xaBj<y>) dm(y)du(t) <

B(z,2~l4c2—m) B(t,c2—m) rj~2Tm

<z [ 15 - fo ),
B(z,c2—1h)
so we get

/ £ (x) — £ (y)Pdm(y) <
yEB(x,271),d(y,F)~2—m

<cr ™ ][ / 1F(5) — F(O)Pdu(t) du(s):
B(z,c27k) B(z,c271)

and now integrating in z,

/33 m / [Ef () = Ef(Y)[Pdm(y)dm(z) <

oo—k V3B;
ri~2 ’ y€B(x,271),d(y,F)~2—m

ly
cerm Y [t [ e - fPdodne)in(s) <

Ti~27k3Bi B(z,c27%) B(z,c27!)
P
< —myoly If(s) 4 f(t)| / an. d du(t <
sere / ][ 1u(B(s,c2-%)) E;—k., xapifa) (@) <
F B(s,c2—1) B(s,c2—k) \Ti™
<c2miny [ (s - fPdutnts) = 0222 By ey
F JB(s,c27!)

Finally, adding in k,

= Z/ ][ |€f(z) = Ef(Y)|"dm(y)dm(z) <
k>t Y d(z, F)~2=F JB(z,271)

SCEF27PY D 22 < 027 E, f(e27!)P.

k>l m>1

Now, we have to consider each case separately. For ¢ < oo and o« = 8 + 7/p, by
Hardy’s Inequality (v = ¢/p) we have that

D 2MEEFRTH)MT <
i

1 k<l 1

a/p
<C Z 215q217q/p271q (Z 2k<p7)Epf(62k)p> +C Z 215q2lvq/p2*lvq/PEpf(C2fl)q <

<C Z 2lﬁq2lvq/p2—lq21(q—wq/p)Epf(cz—l)q +C Z 21[311Qqu/pz—lwq/pEpf(C2—l)q <
1 l
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<0 2B, f(e27h).
!

Forg=ocoand a =f+p/q <1,

2"?’22‘“"2"”Epf(c2"“)” <ot (m}ip 2’“‘*"E,,f@2"“)”> 22@2"”2"“@ <
k<l k<l

< 02—11721(17&)? (Sup QkﬁpEpf(c27k)p> _ C27lo‘p (Sup QkﬁpEpf(csz)p) ,
k

k<l
S0
sup2'°PE,Ef(27) < Csup 2P E, f(c27")".
l 1
Finally, for g = occ and a = § = 1,
sup 2P E,Ef(27HP < Csup 2" E, f(c27F)P 4 Csup 2P Ep f(c27H)P.
1 k l

O
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