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DYADIC NON LOCAL DIFFUSION. THE POINTWISE
CONVERGENCE TO THE INITIAL DATA

MARCELO ACTIS AND HUGO AIMAR

ABSTRACT. In this paper we solve the initial value problem for the diffusion
induced by a dyadic fractional derivative in R*. The main result concerns
the pointwise estimate of the maximal operator of the diffusion by the Hardy-
Littlewood dyadic maximal operator. As a consequence we obtain the point-
wise convergence for the initial data in Lebesgue spaces.

1. INTRODUCTION

If Wi (x) denotes the Weierstrass kernel in R™, the function u(z,t) = (Wy*ug)(x)
solves the heat equation % = Au in Rﬁ“ and the initial data is attained pointwise
provided that ug belongs to some LP(R™) (1 < p < 0o). The main analytical tool
involved in the proof of the pointwise convergence is the proof of the boundedness
of the sup,. |u(x,t)| by the Hardy-Littlewood maximal function.

The above situation can be extended to the case of non local diffusion. In
this case the Laplacian in space variables is substituted by the operator (—A)S/ 2,
0 < s < 2. To be precise, for 0 < s < 2, the fractional derivative of order s of f is
given by the kernel representation of the Dirichlet to Neumann operator [2],

flx) = f(y)
Déf(x) =pw. | ———2=d
® |z —y|"te
The solution of the diffusion problem associated to D?,

%u = D*u, inRY,
u(z,0) = up(z), inR",

for adequate initial data ug is provided by the Fourier transform

(e, 1) = e Mg ().

In [I] the authors consider the problem of pointwise convergence to the initial
data for a Schrodinger type non local operator associated to the dyadic tilings of
R* and the Haar system. As it is well known, see for example [3| 5 [4, [, 8| [7],
the pointwise convergence to the initial data for the initial value problem for the
Schrodinger operator requires more regularity on ug than LP. In particular, in [I]
some kind of Besov regularity for ug is involved and a Calderdn type sharp maximal
operator seems to be natural for that setting.

In this note we aim to consider the diffusion problem associated to the fractional
derivative introduced in [I]. In particular we shall prove that the dyadic Hardy-
Littlewood maximal function still dominates the situation and that the pointwise
convergence to the initial data does not need any regularity. As in the Euclidean
case, LP integrability suffices.
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2 M. ACTIS AND H. AIMAR

Let us be precise. Let = J;cz 27 be the family of all dyadic intervals in RT.
If I belongs to 27, then I = I} = [(k—1)277,k277) for some k € Z* and |I| = 277,
where the vertical bars denote Lebesgue measure in R.

The family 2 is organized in generations: for each I € 27 there exists 2 disjoint
intervals It and I~ in 271! both contained in I, which are precisely the left and
right halves of I, respectively. We shall say that I and I~ are “children” of I. An
“ancestor” of I is any J € 2 such that I C J. Given I and @ in 2, we shall say
that J is the “first common ancestor” of them, if J is an ancestor of both I and @
which is contained in every common ancestor of them.

The dyadic distance §(x,y) from x to y, both in R, is defined as zero when
x = y and as the measure of the smallest dyadic interval J € 2 containing both x
and y. Notice that for any two points z and y in R* §(z,y) is well defined since for
7] large enough and j negative the interval [0,277) is dyadic and contains 2 and

y. As it is easy to see |z — y| < d(x,y) but ﬁ is still singular in the sense that

S+ % = +o00 even when f(O,l) # and f(l’oo) ng are both finite for
€ > 0. See Lemma[2]in §2]

For I € & we shall write h; to denote the Haar function supported on I. In
other words hy = |I|_%(X1— — X1+ ), where xg denotes the indicator function of
the set E. The system {h; : I € 2} known as the Haar system is an orthogonal
basis for LP(R) and an unconditional basis for LP(R),1 < p < oo. With (f, hr)
we denote the inner product fR + fhidx as far as it is well defined. The fractional
dyadic derivative of order o € (0,1) is defined by

@)= W),

R+ 6(xay)1+o ’

provided that the integral is absolutely convergent. In this case we say that f is
differentiable of order ¢ in the dyadic sense. Notice that this is the case if for
example f is a bounded Lipschitz function in the classical sense, since |z — y| <
d(z,y). Later on we shall deal with the Besov classes for which D7 is well defined.
The dyadic Hardy-Littlewood maximal operator is defined for a locally integrable
function f defined on R* by

Mgy f(z) = sup ﬁ / F()|dy

zeleg

D7 f(z) =

We are now in position to state our main result.
Theorem 1. Let 0 <o <1, 1< p< oo and ug € LP(RT) be given. Then,
(A) the function u defined in RT x RT by

u(z,t) = Z e b g, hp)hy (2)

1€

for fixed t is differentiable of order o in the dyadic sense as a function of x

and solves the problem

du —poy,  zeRTt>0,

(1.1) ot
U(JZ,O) ZUO(x)7 $€R+7

where the initial condition is satisfied in the sense of LP(RT);
(B) there exists a constant C > 0 such that

u*(z) = sup |u(z,t)| < CMgyuo(z);
>0

(C) limy_,o+ u(zw,t) = ug(x) for almost every x € RT.
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The paper is organized as follows. In Section [2| we obtain the spectral analysis
of the operator
f@) = fy)
Df = d
/ / 5y Y

in terms of the Haar system. Section [3]is devoted to obtain the maximal estimate
contained in statement (B) of Theorem (1| Finally, Section [4| contains the proof of
Theorem [I1

2. THE DYADIC FRACTIONAL DIFFERENTIAL OPERATOR

The first result in this section is an elementary lemma which reflects the one
dimensional character of RT equipped with the distance 6.

Lemma 2. Let 0 < € < 1, and let I be a given dyadic interval in RY. Then, for

x € I, we have
dy
—— =c I
/15(»’6,3/)1“ .

and J
Y _
—— = C|I|7¢,
/R+\1 oz, y)tte gl
where c. % and C, = #237_1

Proof. Observe that the ball Bs(z,r) is the largest dyadic interval I containing x
with length less than r. Then, for I € 27 and = € I we have

Jie= .
1 0@yt Jps@2-ity 0z, y)t e

_ 5 / dy
fj1 /v 27 F 1< (e y) <27 k) o(z, y)' =
oo
= > Hy: day) =274}y
k=j—1
St 26+1
=2 o—(kthe — = 7],
) 2
k=j—1
The proof of the second identity follows the same lines. O
Let us notice that the indicator function of a dyadic interval I € Z is a Lipschitz
function with respect to the distance 6. In fact |x(z) — xs(y)| < J(ﬁ’ly). Hence for

0 < o < 1, the integral
/ xr (@) — i(z(y) dy

R+ 5(xv y) te

is absolutely convergent since for any dyadic interval J we have

/ xi(z) — i<1<y)dy < / xi(z) — i“(y)der/ xi(z) — i(I(y> dy
w0,y ) Sy - o)t
1 / 1 1
<— | ——dy+ | ————dy.
|I J 6(‘r7y)g Je 5(I,y)1+0
Now, for 0 < ¢ < 1 we are in position to define the operator D? on the linear

span S(H) of the Haar system #, which is contained in the linear span of the
indicator functions of dyadic intervals, by

(2.1) Dcrf — f(l?) — f(y)d

R+ 5({E, y)lJrU
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In [I] the authors prove that Haar functions are the eigenfunctions of D?. How-
ever we will give a simpler alternative proof.
Theorem 3. Let o € R be such that 0 < o < 1, then for each hy € H we have
(2.2) D7hi(x) = bo|I|"7hi(x),
with b, =1+ C,.
Proof. Notice that for I,J € 2, with I N.J = ), we have that
(2.3) d(z,y)=C, forallzelandallyecJ

Moreover, the constant C' = |f|, where I° is the first common ancestor of I and J.
Take hy € H. Suppose first that @ ¢ I. Since h; is supported on I, then
hi(z) = 0. Hence

/ hi(x) — hi(y) dy = / /
5($,y)1+0 RH\I 6 l' y 1+0' 5 1+a Y,

The first integral of the right hand side is zero since h;(y) = 0 for all y € RT\I.
For the second integral, since x ¢ I and y € I, we apply (2.3) to obtain

7h1 7170/ _
| stz du = e [ mi(ay =0

Therefore, we have proved (2.2 . for x ¢ I.
Suppose now that z € I. Let us denote with I* the child of I which contains x.

Then
hi(z) — hr(y) / hi(z) — hr(y) / hi(z) — hi(y)
—————dy = ———dy + ———dy
/1 oz, y)tte Oz, y)tto nre Oz, y)tte
Since hj is constant in each child of I, then the integral over I* is null. Note that
in the integral over I\I* we have é(x,y) = |I|, then

/,\,* Wdy = 1]~ / [ ) = bty
=117 [ i) = by
=|171° UI hyi(z)dy — /Ihl(y)dy]

= |77 hr(2)|1]|
(2.4) 1R @),
Finally, applying Lemma [2] we have that

I L MLl
(2.5) = hr(z)C,|I]7°.
Hence, from and we obtain
hr(z)—h hr(z) —h
P = [ L e
= [I|77hs(z) + Co|I|"7hi(2)
= (1 +Co) |77 hy ().
Then we have proved for x ¢ I, and the proof is completed. O
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We want to point out that Theorem [3| allows us to give an alternative definition
of D?. In fact, given f € S(H) there exists a finite subset F,, of 2 such that

f@)=">" (f-hi)hi(z).
IeF,
Then, from the linearity of equation ([2.2)) we have that
D7f(x) = Y beld|77 (fh) ha(x).
IEF,

Notice that the well definition of the above expression follows from the fact that
the right hand side is the sum of a finite number of terms. Hence, we can extend
D? to every f € LP in the following way

(2.6) D7f(x) = Y bolI|77 {f-hr) hr(2),
1€
provided that the series converges.

3. MAXIMAL FUNCTION ESTIMATES FOR THE SOLUTION

The results in Section [2| show that, for ug € S(H), the function
(3.1) u(w,t) =Y e M ug hy)hy ().
Ie®
solves the problem

ot
U(l‘,O) = UO(:E)’ T e R+a

at least formaly. To start with the analysis of the way in which the initial condition
is attained, in this section we shall get bounds for the maximal operator associated
to u(z,t).

Let us start rewriting as an integral the inner product in[3.I] and changing the
integration order to obtain

0=/ [Ze—b M () () | woly)dy.

I1e®

{ du —poy,  reRtt>0,

We shall use k:(z,y) to denote the kernel in the above equation. More precisely,

(3.2) k(z,y) Ze‘b 7 (y)hy ().
IeD

Then, if K; denotes the operator with kernel k;, we have that

u(e,t) = [ l.g)unly)dy = Koo (o).
R+
The aim of this section is to prove that

(3.3) K ug(x) := iug | Kyuo ()] < CMgyuo(x),
>

for every ug € LP(R™), where My, denotes the dyadic Hardy-Littlewood maximal
operator. In order to do this, we shall construct a decreasing function ¢ : Rt — R*
such that ¢ € L'(0,00) and

1 6(x,
ki (2, y)| = t1/0§0< 51/3)> .

Notice first that for fixed z and y in R, only remains in (3.2]) the terms in which
contains both = and y. We shall denote I° the first common ancestor of z and y,
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and let ¢ be such that I° € 2. Also we shall denote I’ the dyadic interval in 2¢~7
containing I°. Then

y) = Z e b h s (y) s ()
=0
0|—0o
— e*bg‘f ‘ thIO (y)hjo (.CC)
+ 2 s () ()
Jj=1
Let us observe that, for every j > 1, z and y belong to the same child of I/, so that
h1i(y) = hpi(x). Moreover,
hri(y)hr (x }IJ|
Hence,
—b |I]‘ oy

01—
kt(l‘,y) = e_bo‘ll | th[O h[(] Z |IJ

j>1
Now, notice that d(x,y) = |I°| and that |I7]| = 27|I°|. Also, since x and y belong
to different children of I°, we have that ho(y)ho(x) = —|I°|~1. Then, we obtain
that

e~ bo (295(x,y)) "t

i) =~ gy 3
j>1
1 —b 6(z,y)~7 —b, (276( 7t
— z, + 2~ .7 ( (z,y))~
d(z,y) ;

Hence, defining ¢ : RT — R as

I —j =bo(275)~"
o(s) = ol + Z 27e
jz1

1 6(z,y)
kt(x’y):tl/a(p( ffl/a )

In order to see that ¢ € L!(R™), we shall obtain two different bounds for . One
of them will provide the integrability of ¢ on (1,00), and the other in [0,1]. To
obtain the first bound, observe first that

1 ; o
<o fi-ete,
S)_s e

jz1

we have that

which follows easily from the facts that ., 277 = 1 and that |e=%| < 1 for
x € RT. Then, from the Taylor series for the exponential function we obtain

1 ) b
— 277 | 22| = 2
- ; |:SU:| 81+U ’

that give us the integrability of ¢ on (1, 00).
Finally, notice that

_ —c —F — Jg)—
e bos + § 2=J¢ by (275)
j>1

p(s) <

[
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1 -0 - —0
<= efbgs +Z27jefbas
S
jz1
2 bos™"
<
S

The above inequality implies that ¢ € L°(R™), and therefore ¢ is locally integrable.
Hence,

1 o(x,y
= /R+ W@ §1/0)> luo(y)| dy

S / (5(96,11))
E — uo(y)| dy
) tl/o {y:tt/ 023 <§(x,y)<ti/o20+1} ¥ tl/o | O( )|

j=—o0
< 2 (27 7/ uo(y)| dy.
_j;oo Lp( )t1/02j+1 Bg(g:,tl/crngrl)l O(Zl)‘ Yy

Since |Bs(z,7)| < r and each By is a dyadic interval, we have

> . 1

Kiug(x)| < 291 (27 , uo(y)| dy
| ()l j;oo ( )‘Bg(x,t1/02]+1)| Bg(ac,tl/021+l)| ( |

< 3 27 (20) Mayuo ()

Jj=—00
X .
= 4Mayuo(w) Z / ©(27) dy
{y:27-1<y<27}

j=—00
< 4Mgyup(x) / o(y) dy,
R+

< Alepll L Mayuo(x).

Therefore, taking supremum in ¢ we obtain

sup Ko )] < 41el12 Mayo o),
>
which completes the proof of (3.3]).

4. PROOF OF THEOREM [I]
Proof of [(A)l Let us start by noticing that if @ = {a;}7c9 is a bounded sequence
of scalars then, from the equivalence of the LP norm of f and the LP norm of its
1
square function S(f) = (3 ,c4 [(f, hr)|?|hs|?) 2, the operator

Tof(x) =Y ar(f,hi)hs

1€

is bounded in L? with ||T,|| < C|la|l¢~ = Csup;cqy |az].
For t > 0 fixed the sequence {e~<1/I""*} is bounded, hence u(z,t) belongs to L?
as a function of z and ||ul|r < Cllug||L». Also, for fixed t > 0,

Du(x,t) = Y bg|I|™7 (u, hs) hy(x)
sz
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= > bo Tt g, Ay ().
1€9
belongs to LP as a function of z, since b, |I|~7e~b=I""t < L Morover | D7u||1» <

Fluol
t Ol|LP-

To prove that the differential equation in (1.1)) holds, let us start showing that
for t > 0 fixed

e—bolT| 77 (t+h) _ o—bo|T| ™7t .
(4.1) sup + b |I| 77t 1177t 5 0,
€9 h
when h — 0. This is equivalent to
e—bolT| 7t .
sup [eibal[l h_1+bg‘1|70h:| —0,
1€

when h — 0. Using the Taylor’s series of the exponential function we have that

o—ball] 7t By
|:e—b(,|l| h _ 1+bg|[|—ahj|
< ettt B2 max ‘(b |I]~7)2ebalT177s
- h 0<s<h | *
Ry e
— |0 b7ty
72"
Ry e
< o —bo |I|7t hl.
=[ar=° "

Hence, to obtain (4.1) it suffices to see that

by e
sup eV < 0.
rez | 1727
Since
by —b,t1-° —2
-7 S

the first equation of (1.1)) holds.
Finally, to prove the pointwise convergence to the initial data in L?, i.e.

(4.2) u(z,t) L uo(x), cuando t — 0,
we need to proceed in a different way since for every fixed ¢ > 0

sup
Ie2

e—ba It _ 1‘ —1

However, we will use the fact that for every F' € LP the projection operator
Pif = (f;hi)ha
J<iIe9i

converges to f in LP when ¢ tends to infinity, or equivalently,

oD (fhh o,

Jj2i 1€9i
when ¢ tends to infinity. For a fixed € > 0, let us choose ¢ large enough such that

1

2

(4.3) ST (o, hr) Pl ? <e

>0 IeDI
Lp
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Observe that for every I € 27 with j < ¢ we have that || < 2=, so0 we can choose
to small enough such that

(4.4) le el 1177t _ g =1 — et 177 < 1 — mbe2t <

for every t < ty. Now, observe that
1

e — ol v 3 (Z ettt — 1||<uo,h1>|2hf|2>

1€2

[N

Lp

N

<SS ST 1e 7 — 1) Gug, ) 2 Ry ?
i<l IcDi
e
1
2
ST ST et T = 1 g, ) Pl
>0 I€eDI

Lr

Therefore, from (4.3) and (4.4) we obtain

[N

e —wollzr Ze|[[ 03" [uo, hr)Plhsl?

i<t I€Di

Lp

2[0S lfuo, hn)Plhal

j>€ IcDi
Lp

ZelluollLe + 2¢,
then (4.2)) holds and the proof of is complete.

Proof of . This part of the theorem has already been proved in section [3|in the
proof of the estimate (3.3)).

Proof of . The pointwise convergence to the initial data, as usual, is an imme-
diate consequence of the boundedness on LP of the maximal operator u* and the
pointwise convergence in a dense subset of LP. We will sketch a brief proof for sake
of completeness.

Since we already know that K;f — f in the LP sense as t — 07, in order to
prove the pointwise convergence, define

E={fell: tlir(r)1+ K:f exists for almost every z € RT}.
—

Notice that S(H) C E C LP. Since S(#H) is dense in L?, then we only need to prove
that E is a closed subset of LP. Let {f,} be a sequence contained in F such that
fn converges in LP to a function f. To see that f € F it is enough to prove that
for all € > 0 we have

(4.5) |E| = Hx : limsup Ky f (z) — liminf K, f(z) > e}‘ =0.
t—0+

t—0t

For every n we can write

|E| < {x : limsup K, f,,(x) — liminf K, f,,(x) > EH
t—0+ t—0t 3
+ {x: limsup K;(fn, — f)(x) > e}' + H:ﬁ : liminf Ky (f, — f)(x) > 6}‘ .
t—0+ 3 t—0t 3
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The first term is zero since f, € E. For the other two terms we will use the
boundedness on L? of the maximal operator K* which follows from the item |(B)
Notice that for every function g we have that

lim sup K;g(x)

t—0+

< K*g(x).

Then, since K* is bounded on L? and therefore weakly bounded on L?, we obtain

{o: tmsw (7, - @) > § 13 510 Al

t—0+ 3

Similarly we can show that

{:17: liminf K;(f, — f)(x) > EH =3 Elp”fn — fllze.

t—0t 3

Hence,

1
Bl 3l = Flls

When n tends to infinity we have (4.5). Then E is closed and therefore E = LP.
This means that for every ug € LP we have that

lim w(z,t) = lim Kiup exists.
t—0+

t—0+
But we already know that u(x,t) — ug(x) when ¢t — 0" in LP, then follows,
which completes the proof. O
REFERENCES

1. Hugo Aimar, Bruno Bongioanni, and Ivana Gémez, On dyadic nonlocal Schrodinger equations
with Besov initial data, J. Math. Anal. Appl. 407 (2013), no. 1, 23-34. MR 3063102

2. Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Lapla-
cian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. MR 2354493
(2009k:35096)

3. Lennart Carleson, Some analytic problems related to statistical mechanics, Euclidean harmonic
analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), Lecture Notes in Math., vol.
779, Springer, Berlin, 1980, pp. 5-45. MR 576038 (82j:82005)

4. Michael G. Cowling, Pointwise behavior of solutions to Schridinger equations, Harmonic anal-
ysis (Cortona, 1982), Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 83-90.
MR 729347 (85¢:34029)

5. Bjorn E. J. Dahlberg and Carlos E. Kenig, A note on the almost everywhere behavior of
solutions to the Schrodinger equation, Harmonic analysis (Minneapolis, Minn., 1981), Lecture
Notes in Math., vol. 908, Springer, Berlin, 1982, pp. 205-209. MR 654188 (83f:35023)

6. Per Sjolin, Regularity of solutions to the Schrédinger equation, Duke Math. J. 55 (1987), no. 3,
699-715. MR 904948 (88j:35026)

7. T. Tao and A. Vargas, A bilinear approach to cone multipliers. 1I. Applications, Geom. Funct.
Anal. 10 (2000), no. 1, 216-258. MR 1748921 (2002e:42013)

8. Luis Vega, Schrodinger equations: pointwise convergence to the initial data, Proc. Amer. Math.
Soc. 102 (1988), no. 4, 874-878. MR 934859 (89d:35046)

INSTITUTO DE MATEMATICA APLICADA DEL LITORAL (CONICET-UNL), DEPARTAMENTO DE
MATEMATICA (FII-UNL), SANTA FE, ARGENTINA.
E-mail address: mactis@santafe-conicet.gov.ar

INSTITUTO DE MATEMATICA APLICADA DEL LITORAL (CONICET-UNL), DEPARTAMENTO DE
MATEMATICA (FII-UNL), SANTA FE, ARGENTINA.
E-mail address: haimar@santafe-conicet.gov.ar



	Portada PP
	2013-0012
	cover
	2013-0013
	cover
	(Actis - Aimar) Dyadic non local difussions_The pointwise       convergence to the initial data
	1. Introduction
	2. The dyadic fractional differential operator
	3. Maximal function estimates for the solution
	4. Proof of Theorem 1
	References






