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Continuous Problem

Consider a linear, elliptic PDE over a polygonal, bounded domain Ω ⊂ Rd

(d ∈ N)

Lu = f in Ω, and some boundary conditions on ∂Ω

in variational formulation:

u ∈ V : B[u, v] = 〈f, v〉 ∀v ∈ V, (P)

where

1 V is an Hilbert space, for instance H1
0 (Ω), H1(Ω)/R,

H1
0 (Ω; Rd)× L2(Ω)/R, H0(div; Rd), H0(curl; Rd);

2 f ∈ V∗ an element of the dual space,

3 B : V× V→ R is a continuous bilinear form that satisfies an inf-sup
condition:

|B[v, w]| ≤ C∗‖v‖V ‖w‖V ∀v, w ∈ V,

inf
v∈V

sup
w∈V

B[v, w]

‖v‖V‖w‖V
= c∗ > 0,

∀w ∈ V \ {0} ∃v ∈ V : B[v, w] 6= 0.
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Existence and Uniqueness [Nečas ’62]

Theorem (Existence and Uniqueness). Problem (P) has for any f ∈ V∗
a unique solution u ∈ V if and only if the bilinear form B is continuous
and satisfies the inf-sup condition

inf
v∈V

sup
w∈V

B[v, w]

‖v‖V‖w‖V
= inf

w∈V
sup
v∈V

B[v, w]

‖v‖V‖w‖V
= c∗ > 0.

Moreover
‖u‖V ≤ c−1

∗ ‖f‖V∗ .

Remarks:

1 Continuity of B on V× V is inherited to all subspaces of V with the
same constant C∗.

2 Existence and uniqueness for coercive B, i. e.,

B[v, v] ≥ c∗‖v‖2V ∀v ∈ V,

follows from Lax-Milgram Theorem [’54]. Coercivity implies the inf-sup
and is inherited to any subspace of V with the same constant c∗.

3 The inf-sup condition is more general than coercivity but, in general,
the inf-sup condition is not valid on subspaces of V!
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Example: Linear Elliptic PDE

Poisson problem: For given f ∈ L2(Ω) solve for u such that

−∆u = f in Ω,

u = 0 on ∂Ω.

Here, V := H1
0 (Ω), ‖ · ‖V = ‖ · ‖H1(Ω), and for u, v ∈ V set

B[u, v] :=

Z
Ω

∇u · ∇v dx,

〈f, v〉 :=

Z
Ω

f v dx.

B is continuous and coercive, i. e.,

B[v, v] ≥ c∗‖v‖2H1(Ω) ∀v ∈ H1
0 (Ω),

thanks to the Poincaré-Friedrichs inequality

‖v‖L2(Ω) ≤ C‖∇v‖L2(Ω) ∀v ∈ H1
0 (Ω).
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Example: Linear Saddle-Point Problem

Stokes problem: For given f ∈ L2(Ω; Rd) solve for velocity u and pressure
p such that

−∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

Here, V = H1
0 (Ω; Rd)× L2(Ω)/R and for u = (u, p), v = (v, q) ∈ V set

B[u, q] :=

Z
Ω

∇u :∇v dx−
Z

Ω

p∇ · v dx−
Z

Ω

∇ · u q dx,

〈f, v〉 :=

Z
Ω

f · v dx.

B is continuous and fulfills the inf-sup condition (LBB condition) thanks to
Poincaré-Friedrichs and solvability of the divergence equation with respect
to the norm

‖v‖2V = ‖(v, q)‖2V = ‖v‖2H1(Ω;Rd) + ‖q‖2L2(Ω).
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Conforming Discretization with Adaptive Finite Elements

1 Let T0 be an initial, conforming triangulation of Ω and let T be some
conforming and shape-regular refinement of T0:

T0 T

2 Let V(T ) ⊂ V be piecewise polynomial finite element space over T
satisfying the single discrete inf-sup condition

inf
V ∈V(T )

sup
W∈V(T )

B[V,W ]

‖V ‖V‖W‖V
= c(T ) > 0

or

inf
W∈V(T )

sup
V ∈V(T )

B[V,W ]

‖V ‖V‖W‖V
= c(T ) > 0.
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Remarks on the Discrete Inf-Sup Condition

1 The first discrete inf-sup condition implies injectivity of the discrete
operator, whence it is also surjective, and thus, the adjoint operator is
injective. This is characterized by the second discrete inf-sup.

2 Since V(T ) ⊂ V, the continuous inf-sup condition implies for any
V ∈ V(T ) the existence of a w ∈ V such that

B[V,w]

‖V ‖V‖w‖V
≥ c∗.

But in general, w 6∈ V(T ) and thus the continuous inf-sup does not
imply the discrete one.

3 The continuous inf-sup condition implies the discrete one iff there
exists a continuous operator Π: V→ V(T ) such that

B[V,w] = B[V,Πw] ∀V ∈ V(T ) and w ∈ V.

Furthermore, c(T ) ≥ c∗ is independent of T iff there exists a C > 0
independent of T s. th.

‖Πw‖V ≤ C‖w‖V ∀w ∈ V.
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Discrete Problem

The discrete problem reads:

U ∈ V(T ) : B[U, V ] = 〈f, V 〉 ∀V ∈ V(T ).

Since V(T ) ⊂ V, the bilinear form B is continuous. The discrete inf-sup
condition implies existence and uniqueness of the discrete solution [Nečas].

Properties of the discrete solution:

1 A priori bound
‖U‖V ≤ c(T )−1‖f‖V∗

2 Galerkin orthogonality

B[Uk − u, V ] = 0 ∀V ∈ V(T )

implies the quasi best approximation property [Babuška, ’71]

‖U − u‖V ≤
C∗

c(T )
inf

V ∈V(T )
‖V − u‖V.

For coercive forms B this is Cea’s Lemma [Cea ’64].

Uniform estimates only for stable discretizations with c(T ) ≥ c∗ > 0.
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Example of Adaptive Approximation: Singular Solution

zoom to [-1.000,1.000]x[-1.000,1.000] zoom to [-0.001,0.001]x[-0.001,0.001]

≈ 2000 nodes Zoom: ×103

zoom to [-0.000,0.000]x[-0.000,0.000] zoom to [-0.000,0.000]x[-0.000,0.000]

Zoom: ×106 Zoom: ×109
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The Adaptive Loop

Starting with the initial grid T0 we use the standard adaptive iteration:

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

for computing a sequence {Tk, Uk}k≥0 of grids and discrete solutions.

SOLVE: computes the Galerkin approximation Uk ∈ Vk to u:

1 exact integration;
2 exact numerical algebra;

ESTIMATE: computes error indicators {Ek(T )}T∈Tk ;

MARK: selects elements in Tk for refinement;

REFINE: refines all marked elements and outputs a new grid.

It is not clear, that the discrete solution improves!
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SOLVE: computes the Galerkin approximation Uk ∈ Vk to u:

1 exact integration;
2 exact numerical algebra;

ESTIMATE: computes error indicators {Ek(T )}T∈Tk ;

MARK: selects elements in Tk for refinement;

REFINE: refines all marked elements and outputs a new grid.

It is not clear, that the discrete solution improves!
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Example of Adaptive Approximation: Interior Layer

We consider the adaptive approximation to a solution of the Poisson
problem with the following features:

rough ride hand side;

rough boundary data.

This results in a solution with steep gradients:
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Adaptive Iterations 0 and 1

Adaptive iteration 0 Adaptive iteration 1
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Adaptive Iterations 2 and 3

Adaptive iteration 2 Adaptive iteration 3
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Adaptive Iterations 4 and 5

Adaptive iteration 4 Adaptive iteration 5
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Adaptive Iterations 6 and 7

Adaptive iteration 6 Adaptive iteration 7
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Adaptive Iterations 8 and 9

Adaptive iteration 8 Adaptive iteration 9
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Adaptive Iterations 10 and 11

Adaptive iteration 10 Adaptive iteration 11
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The Module ESTIMATE

Given {Tk, Uk}, compute an estimator for the true error ‖Uk − u‖V in
terms of the discrete solution and given data.

A posteriori error estimators are split into local indicators Ek(T ) on
elements T ∈ Tk and can be summed over subsets Sk ⊂ Tk

Ek(Sk) :=
“ X

T∈Sk

E2
T (T )

”1/2

.

Properties of the estimator: There exist constants 0 < c1 ≤ c2 <∞, solely
depending on the shape-regularity of Tk, such that

c1‖Uk − u‖2V ≤ E2
k(Tk) ≤ c2

`
‖Uk − u‖2V + osc2

k(Tk)
´
.

The left inequality is called upper bound the right one lower bound.

The upper bound only holds globally.

The lower bound also holds in a local variant:

E2
k(T ) ≤ c2

`
‖Uk − u‖2V(Uk(T )) + osck(Uk(T ))2´

The oscillation term osck(Tk) is usually of higher order.
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Example: The Residual Estimator and Oscillation

Denote by hT ∈ L∞(Ω) the piecewise constant mesh-size function with

hT |T = |T |1/d ≈ diam(T ), T ∈ T .

Poisson problem: −∆u = f in Ω, u = 0 on ∂Ω

E2
T (T ) := ‖hT (−∆U − f)‖2L2(T ) + ‖h1/2

T [[∇U ]] ‖2L2(∂T∩Ω)

osc2
T (T ) := ‖hT (fT − f)‖2L2(T ).

Stokes problem: −∆u +∇p = f and −div u = 0 in Ω, u = 0 on ∂Ω

E2
T (T ) := ‖hT |−∆U +∇P − f | ‖2L2(T ) + ‖h1/2

T [[∇U ]] ‖2L2(∂T∩Ω)

+ ‖div U‖2L2(T )

osc2
T (T ) := ‖hT |fT − f | ‖2L2(T )
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The Module MARK

Select elements for refinement based on information provided by the
indicators {Ek(T )}T∈Tk .

Popular marking strategies are motivated by the equidistribution of the
true error on an optimal grid [Babuška, Rheinboldt ’78].

Equidistribution Strategy:

Parameters TOL > 0, θ ∈ [0, 1]

Elimit := θTOL/#T 1/2
k

Maximum Strategy:

Parameter ν ∈ [0, 1]

Elimit := ν max
T∈Tk

Ek(T )

Set Mk of marked elements is then defined as

Mk := {T ∈ Tk | Ek(T ) ≥ Elimit}.

Dörfler Marking invented for the first convergence proof [’96]: Given
parameter θ ∈ (0, 1] select Mk ⊂ Tk such that

θEk(Tk) ≤ Ek(Mk).
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The Module REFINE

Refine all marked elements in Mk ⊂ Tk and create a conforming and
shape-regular triangulation Tk+1 of Ω.

MARK−→ REFINE−→

Denote by T the set of all possible refinements of an initial grid T0.

Using bisectional refinement yields the following properties:

1 Mesh-size of refined elements is strictly decreased: For the two
children T1, T2 of any bisected element T ∈ T we have |Ti| = 1

2
|T |,

i = 1, 2.

2 Conformity is preserved and shape-regularity of any refinement T ∈ T
solely depends on the shape-regularity of T0.

3 Any sequence T0, T1, . . . , Tk, . . . of generated triangulations is nested
which implies nested spaces V(T0) ⊂ V(T1) ⊂ . . .V(Tk) ⊂ . . .V for
piecewise polynomials.
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Uniform Refinement implies Density

Uniform refinement yields for a sequence {Tk}k≥0

lim
k→∞

hmax(Tk) = 0,

which implies the following density property of the finite element spaces:

∀v ∈ V : lim
k→∞

min
Vk∈Vk

‖Vk − v‖V = 0 =⇒
[
k≥0

V(Tk)
‖.‖V

= V.

Proof: Let W be a dense subspace of V and let Πk : W→ V(Tk) be an
interpolation operator with

‖w −Πkw‖V . hq
max(Tk)‖w‖W,

where q > 0 depends on W and V(Tk). For instance, W = H2(Ω),
V = H1(Ω) and Πk Lagrange interpolation operator with q = 1.
Then for any v ∈ V and given ε > 0 first choose w ∈W close to v and
then k large enough such that

‖v −Πkw‖V ≤ ‖v − w‖V + ‖w −Πkw‖V

. ‖v − w‖V + hq
max(Tk)‖w‖V ≤ ε.
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Convergence: Uniform vs. Adaptive Refinement

For uniform refinement the density of spaces in combination with
quasi-best approximation property and stability of the discretization
c(T ) ≥ c∗ > 0

‖Uk − u‖V ≤
C∗

c∗
min

Vk∈Vk

‖Vk − u‖V → 0

as k →∞, i. e., convergence.

Adaptive refinement may not yield this density property, since it may
happen that

lim
k→∞

hmax(Tk) > 0

Hence, convergence Uk → u for k →∞ is not clear, and can only be true,
if u can be approximated by functions Vk ∈ Vk.

This hinges on properties of the modules

SOLVE, ESTIMATE, MARK, and REFINE.
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Convergence of AFEM: Enforce Progress

Principal idea: “Travel” with the discrete solution and monitor the
improvement between two consecutive iterations:

Enforce a strict improvement when going from Uk to Uk+1!

MNS algorithm [Morin, Nochetto, S. ’00] based on [Dörfler ’96]:

SOLVE: Restriction of problem class: selfadjoint elliptic problems;

ESTIMATE: Reliable estimator with a discrete local lower bound;
needs also oscillation indicators;

MARK: Dörfler marking for estimator and oscillation:

θEk(Tk) ≤ Ek(Mk) and θ̄ osck(Tk) ≤ osck(Mk);

REFINE: Ensure that all marked elements and its direct neighbors are
sufficiently refined (interior node property):
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Contraction Property of MNS

1 The interior node property gives a discrete lower bound for the error
reduction ‖Uk − Uk+1‖V:

‖Uk − Uk+1‖2V + osc2
k(Mk) ≥ 1

c2
E2

k(Mk).

2 Assuming osck(Tk) ≡ 0, Dörfler marking and the upper bound give

‖Uk − Uk+1‖2V ≥
1

c2
E2

k(Mk) ≥ θ2 1

c2
E2

k(Tk) ≥ θ2 c1
c2
‖Uk − u‖2V,

i. e., the error reduction is a fixed portion of the error.

3 Restriction to selfadjoint elliptic problems implies orthogonality of the
error in the energy norm:

‖Uk+1 − u‖2V = ‖Uk − u‖2V − ‖Uk − Uk+1‖2V.

which implies the contraction property

‖Uk+1 − u‖2V ≤
“

1− θ2 c1
c2

”
| {z }

<1

‖Uk − u‖2V =: α‖Uk − u‖2V.
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Contraction Result for Selfadjoint Problems

Including marking for oscillation when osck(Tk) 6≡ 0, one obtains

Theorem (Contraction of Total Error). There exists γ > 0 and α < 1
s. th. MNS achieves

‖Uk+1 − u‖2V + γ osc2
k+1(Tk+1) ≤ α

`
‖Uk − u‖2V + γ osc2

k(Tk)
´
.

[Mekchay, Nochetto ’05] based on [Chen, Feng ’04] and
[Morin, Nochetto, S. ’00,’02,’03].

Extensions to other linear and nonlinear problems:

Bänsch, Morin & Nochetto; Carstensen & Hoppe;
Cascon, Nochetto & S., Chen, Holst & Xu, Becker & al.. . .

Veeser; S. & Veeser; Carstensen; Diening & Kreuzer.

Recent result: The standard AFEM without interior node property and
without marking for oscillation yields for a γ > 0 and 0 < α < 1

‖Uk+1 − u‖2V + γE2
k+1(Tk+1) ≤ α

`
‖Uk − u‖2V + γE2

k(Tk)
´
.

[Cascon, Kreuzer, Nochetto, & S. ’08]
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Decay Rate for Selfadjoint Elliptic Problems in Terms of DOFs

For adaptive methods, the speed of convergence has to be measured in
terms of Degrees Of Freedom (DOFs):

‖Uk − u‖V . (#Tk −#T0)−s instead of ‖Uk − u‖V . hq
max(Tk).

Based on a contraction property of AFEM for some suitable error notion,
for instance the total error for MNS, one can proof the following result:

Theorem (Optimality). The sequence of Ritz-Galerkin solutions {Uk}k≥0

is quasi-optimal with respect to DOFs, i. e.,

min
T ∈TN

min
V ∈V(T )

‖V − u‖V . N−s =⇒ ‖Uk − u‖V . (#Tk −#T0)−s,

where TN = {T ∈ T | #T −#T0 ≤ N} (plus decay of oscillation).

Binev, Dahmen, DeVore ’04, Stevenson ’05: Modification of MNS
with additional coarsening;

Stevenson ’05: Nearly standard AFEM with an inner loop to reduce
oscillation;

Cascon, Kreuzer, S., Nochetto ’08: Standard AFEM.
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A Lot of Open Questions

The above result cannot be (directly) generalized to problems that are not
related to an energy minimization:

Diffusion-advection problems

Saddle point problems

. . .

Also problems with other modifications

Non-nested approximations

Stabilized discretizations (SUPG, etc.)

Other norms

. . .

It cannot be generalized to other marking strategies

Maximum Strategy

Equidistribution Strategy

. . .

For some nonlinear problems MNS does not even yield a contraction.

But: AFEM is working well for these problems.
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Convergence of AFEM: Observe Progress

Principal idea: Observe the full sequence {Uk}k≥0 of discrete solutions as
they pass by:

Determine properties of the modules of AFEM which guarantee
convergence.

Module SOLVE:

1 Conforming and nested approximation:

∀T ∈ T : V(T ) ⊂ V and ∀T ≤ T∗ ∈ T : V(T ) ⊂ V(T∗).

2 Stable discretization of (P):

∀T ∈ T : inf
V ∈V(T )

sup
W∈V(T )

B[V,W ]

‖V ‖V‖W‖V
≥ c∗

with a fixed constant c∗ > 0 solely depending on the bilinear form B
and T, but not on a particular T ∈ T.
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Convergence of Galerkin Solutions [Morin, S., Veeser ’08]

Lemma (Convergence of Galerkin Solutions). The assumptions on
SOLVE imply the existence of u∞ ∈ V such that

lim
k→∞

‖Uk − u∞‖V = 0,

and u∞ is the solution of

u∞ ∈ V∞ : B[u∞, v∞] = 〈f, v∞〉 ∀v∞ ∈ V∞

with V∞ =
S

k≥0 Vk ⊂ V.

Steps of the proof:

1 The uniform inf-sup constant c∗ for Vk implies the inf-sup condition
on V∞ with constant c∗.

2 V∞ is a closed subspace of V, which implies existence and uniqueness
of u∞ by the Nečas theorem.

3 Quasi-best approximation property of Uk with respect to u∞ yields

‖Uk − u∞‖V ≤
C∗

c∗
inf

Vk∈V(T )
‖Vk − u∞‖V → 0

by construction of V∞.
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Convergence of Mesh Size Functions [Morin, S., Veeser ’08]

Lemma (Convergence of Mesh Size Functions). The sequence of
mesh-size functions {hk}k≥0 ⊂ L∞(Ω) defined as

hk|T = |T |1/d , T ∈ Tk,

converges uniformly to some h∞ ∈ L∞(Ω), i. e.,

lim
k→∞

‖hk − h∞‖∞;Ω = 0.

Steps of the proof:

1 For almost all x ∈ Ω, the sequence hk(x) is monotone decreasing and
bounded from below, which yields point wise convergence:

∀x ∈ Ω : lim
k→∞

hk(x) =: h∞(x).

2 The basic property of refinement by bisection implies: for any x ∈ Ω
there holds

either hk+1(x) = hk(x) or hk+1(x) ≤ 2−1/dhk(x).

This can be utilized to conclude uniform convergence.
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Limits and Splitting of the Grid

Observations:

1 If it happens that V∞ = V, then u∞ = u and we have convergence,
i. e.,

lim
k→∞

‖Uk − u‖V = 0.

2 V∞ 6= V is equivalent to h∞ 6≡ 0 in Ω, i. e., h∞(x) > 0 for some
x ∈ Ω.

3 h∞(x) > 0 implies, that there exists K = K(x) and T ∈ TK such
that x ∈ T and T ∈ Tk for all k ≥ K.

This motivates the splitting of Tk:

T +
k :=

\
`≥k

T` and T 0
k := Tk \ T +

k .

elements that are no longer refined, and elements that are refined at least
once.

Corollary. The splitting of Tk implies for the mesh size functions in Ω(T 0
k ):

lim
k→∞

‖hk‖∞;Ω(T 0
k

) = 0.
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Additional Assumption on Module SOLVE

Local approximability: Let W ⊂ V be a dense sub-space and let
Πk ∈ L(W,Vk) be a continuous, linear interpolation operator with

∀w ∈W, ∀T ∈ Tk : ‖w −Πkw‖V(T ) . ‖hq
k‖∞;T ‖w‖W(T ),

where q > 0 depends on regularity properties of W.

Lemma (Local Density). Convergence of the mesh size function in Ω(T 0
k )

implies local density of the finite element spaces

∀v ∈ V : lim
k→∞

inf
Vk∈Vk

‖v − Vk‖V(Ω(T 0
k

)) = 0.

Proof: Local density follows from local approximability:

‖v −Πkw‖V(Ω(T 0
k

)) ≤ ‖v − w‖V(Ω(T 0
k

)) + ‖w −Πkw‖V(Ω(T 0
k

))

≤ ‖v − w‖V(Ω) + C ‖hq
k‖∞;Ω(T 0

k
)‖w‖W(Ω).

Now, choose first w ∈W close to v and then k large to make the right
hand side small.
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Assumptions on Modules ESTIMATE, MARK, and REFINE

Observation: Obviously, ESTIMATE has to control the locally induced
error in Ω(T +

k ) and MARK Ek(T +
k ).

ESTIMATE: Localized upper bound for the residual R(Uk) ∈ V∗:

∀v ∈ V : |〈R(Uk), v〉| .
X

T∈Tk

Ek(T )‖v‖V(Uk(T )).

Stability of the indicators

∀T ∈ Tk : Ek(T ) . ‖Uk‖V(Uk(T )) + ‖D‖2;Uk(T )

for some D ∈ L2(Ω).

Module MARK: Control of maximal indicator

∀T ∈ Tk \Mk : Ek(T ) ≤ g(max{Ek(T ) | T ∈Mk}),

where g : R+
0 → R+

0 is continuous in 0 with g(0) = 0.

Module REFINE: Minimal refinement, i. e., all marked elements in
Mk are bisected once.
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Lemma. The estimator Ek(Tk) is uniformly bounded, i. e.,

Ek(Tk) ≤ Λ

and the maximal indicator vanishes in the limit:

lim
k→∞

max{Ek(T ) | T ∈ Tk} = 0.

Steps of the Proof: (with Uk(T ) replaced by T , . . . )

1 Stability of the discretization and the indicators yields

E2
k(Tk) .

X
T∈Tk

‖Uk‖2V(T ) + ‖D‖22;T . ‖Uk‖2V(Ω) + ‖D‖22;Ω ≤ Λ

2 Let Tk ∈Mk s. th. Ek(Tk) = max{Ek(T ) | T ∈Mk}. Since
Tk ∈Mk ⊂ T 0

k convergence of the mesh size function gives

|Tk| = ‖hd
k‖∞;Tk ≤ ‖h

d
k‖∞;Ω(T 0

k
) → 0.

3 Stability of the indicators implies

Ek(Tk) . ‖Uk − u∞‖V(Ω) + ‖u∞‖V(Tk) + ‖D‖2;Tk → 0

by convergence of Galerkin solutions and continuity of norms with
respect to the Lebesgue measure. Now, assumption on marking yields
the claim.
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Convergence Without Lower Bound [S. ’??]

Theorem (Convergence of AFEM). The standard AFEM with a reliable
estimator achieves

lim
k→∞

‖Uk − u‖V = 0.

Sketch of the Proof: We already know the strong convergence Uk → u∞ in
V, and thus it remains to show u∞ = u, for instance by proving

R(u∞) = 0 in V∗.

Since W is dense in V it is sufficient to prove

lim
k→∞

〈R(Uk), w〉 = 〈R(u∞), w〉 = 0 ∀w ∈W.
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Convergence Without Lower Bound

For k ≥ ` it holds T +
` ⊂ T

+
k ⊂ Tk and Ω(T 0

` ) = Ω(Tk \ T +
` ).

Galerkin orthogonality in combination with the upper bound gives for any
w ∈W with ‖w‖W = 1

|〈R(Uk), w〉| = |〈R(Uk), w −Πkw〉| .
X

T∈Tk

Ek(T )‖w −Πkw‖V(T )

.
X

T∈Tk\T
+
`

Ek(T )‖w −Πkw‖V(T ) +
X

T∈T +
`

Ek(T )‖w −Πkw‖V(T )

. Ek(Tk)‖w −Πkw‖V(Ω(T 0
`

)) + Ek(T +
` )‖w −Πkw‖V(Ω)

. Λ‖hq
k‖∞;Ω(T 0

`
) + Ek(T +

` )

. Λ‖hq
`‖∞;Ω(T 0

`
) + Ek(T +

` ).
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Convergence Without Lower Bound

Let ε > 0 be arbitrary. Convergence of mesh size functions allows to first
choose ` s. th.

Λ‖hq
`‖∞;Ω(T 0

`
) ≤

ε

2
.

Convergence of the maximal indicator then allows to choose k ≥ ` s. th.

Ek(T ) ≤ ε

2
(#T +

` )−1/2 ∀T ∈ T +
` =⇒ Ek(T +

` ) ≤ ε

2
.

In summary |〈R(Uk), w〉| . ε for k sufficiently large, which implies
〈R(Uk), w〉 → 0 as k →∞.

Remark: The assumption on marking can be weakened such that it
becomes essentially necessary:

lim
k→∞

max{Ek(T ) |T ∈Mk} = 0

=⇒ ∀T ∈
[
`≥0

T +
` : lim

k→∞
Ek(T ) = 0.
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Convergence of the Estimator

This result holds true for non-efficient estimators, even in the case

lim
k→∞

Ek(Tk) > 0,

i. e., when allowing for overestimation.

Progress of AFEM can only be monitored by observing Ek(Tk) and
efficiently stopping the iteration needs an efficient estimator:

Ek(T ) . ‖Uk − u‖V(Uk(T )) + osck(Uk(T )), T ∈ Tk.

Theorem (Convergence of the Estimator). Under minimal assumptions
on osck, for an efficient estimator we obtain

lim
k→∞

Ek(Tk) = 0.

Sketch of the Proof: Split

E2
k(Tk) = E2

k(Tk \ T +
` ) + E2

k(T +
` )

. ‖Uk − u‖V(Ω(Tk\T
+
`

))
+ osck(Ω(Tk \ T +

` )) + E2
k(T +

` ) ≤ ε

by first choosing ` and then k ≥ ` sufficiently large.
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1 Problem and Adaptive Discretization
Continuous Problem
Discretization
Adaptive Method
Density and Convergence

2 Convergence of AFEM: Enforce Progress
Assumptions and MNS
Comments on Decay Rate
Open Issues

3 Convergence of AFEM: Observe Progress
Basic Properties of AFEM
Local Density
Convergence

4 Concluding Remarks
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Concluding Remarks

1 Property of a convergent adaptive method:

the adaptive method must not overlook possible error sources;
overestimation should not forestall convergence;
efficiency of the estimator will be a key property for optimality.

2 Avoiding the discrete lower bound is highly advantageous:

4th order problems;
stabilized discretizations.

3 Basic ideas can be generalized:

nonlinear problems: convex minimization, optimal control, . . . ;
non-nested spaces: red–green refinement, mini element for
Stokes, HCT and RHCT elements for 4th order problems, . . .

4 Any practical adaptive method is converging:

important message for practice (engineers, etc.);
optimality has to be addressed for these methods!!!

Thank you for your attention!



Convergence of
Adaptive Finite

Elements

K.G. Siebert

Outline

Problem and
AFEM

Convergence of
AFEM: Enforce
Progress

Convergence of
AFEM: Observe
Progress

Remarks

Concluding Remarks

1 Property of a convergent adaptive method:

the adaptive method must not overlook possible error sources;
overestimation should not forestall convergence;
efficiency of the estimator will be a key property for optimality.

2 Avoiding the discrete lower bound is highly advantageous:

4th order problems;
stabilized discretizations.

3 Basic ideas can be generalized:

nonlinear problems: convex minimization, optimal control, . . . ;
non-nested spaces: red–green refinement, mini element for
Stokes, HCT and RHCT elements for 4th order problems, . . .

4 Any practical adaptive method is converging:

important message for practice (engineers, etc.);
optimality has to be addressed for these methods!!!

Thank you for your attention!



Convergence of
Adaptive Finite

Elements

K.G. Siebert

Outline

Problem and
AFEM

Convergence of
AFEM: Enforce
Progress

Convergence of
AFEM: Observe
Progress

Remarks

Concluding Remarks

1 Property of a convergent adaptive method:

the adaptive method must not overlook possible error sources;
overestimation should not forestall convergence;
efficiency of the estimator will be a key property for optimality.

2 Avoiding the discrete lower bound is highly advantageous:

4th order problems;
stabilized discretizations.

3 Basic ideas can be generalized:

nonlinear problems: convex minimization, optimal control, . . . ;
non-nested spaces: red–green refinement, mini element for
Stokes, HCT and RHCT elements for 4th order problems, . . .

4 Any practical adaptive method is converging:

important message for practice (engineers, etc.);
optimality has to be addressed for these methods!!!

Thank you for your attention!
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